« ある日 | トップページ | 可逆と不可逆のはざ間(エントロピー増大則) »

2006年7月 3日 (月)

電気の伝わる速さ(分布定数回路)

  以前,電流というのは電子などが流れる速さを意味しており,通常の家庭電器の中を流れる電流は数アンペア程度で,これは電子の速さにして秒速何ミリとか何センチ程度の遅いものですと書きました。

 そして,それでも電荷のキャリアがトコロテン式に押し出される結果として,遠いところに電源やスイッチがある場合でも,電灯などはほぼ即座に点くというような内容のことを述べました。

 それでは,ほぼ即座といっても,直流回路でスイッチを入れてから,電流がほぼ一定になって安定するまでに,実際どのくらいの時間がかかるのでしょうか?

 回路全体の抵抗をRオーム(Ω),電池など電圧源の直流起電力をEボルト(V)とします。

 導線には必ず変動電流によって誘導される起電力,つまり,自己インダクタンス(自己誘導係数)= L ヘンリー(H)があると考えられますが,電流 i アンペアが一定な安定状態では,それによる逆起電力は起きません。

 しかし,電流 i がゼロから定常値のE/Rに達するまでは電流は一定ではなく,次第に大きくなるように変化するため,その際僅かな間でも"逆起電力=自己誘導起電力"が働くはずです。

        

 そこで,回路方程式はL (d i /dt )+R i=E という形に書けます。

 t=0 には i=0 であったという初期条件で,この方程式を解くと, i =(E/R ){1-exp(-t /τ)} となります。ただしτ=L/Rです。

 この式によれば電流が定常電流の i =E/R になるには,時間 t が ∞ になる必要がありますが,実際にはt=τで既に i =(E/R )(1-1/e),つまり定常電流の約 2/3 にまで達し, t=3τで は定常電流の95 % 以上にもなります。

 そして円形断面の均質な導線の場合,透磁率をμ,長さをℓとして自己インダクタンスLを計算すると,L=μℓ/(4π)であることがわかります。

 真空では透磁率はμ=4π× 10-7Hです。そして抵抗はR=ρℓ/Sですが通常の半径が0.1mm程度の断面の銅製の導線ではρ=13.6ΩmでS=π× 10-8m2ですから,τ=L/RはμS/(4πρ)~  10-15秒程度になります。

 それ故,導線の材料が銅より抵抗の大きい金属だとしても,ほんの一瞬で電流はほぼ100%までの定常に達するはずです。

 こうした非定常電流の現象を過渡現象といいます。

 例えば2本の平行導線回路が無限に延びていて左端に電圧源Eボルトがあるだけの閉回路を想定します。

 これは,単位長さ当たり,抵抗R,インダクタンスLと2本の導線間のキャパシタ(コンデンサ容量):C,と内部コンダクタンス(アドミッタンス=インピーダンスの逆数の実部)Gがあるような等価回路としてよいと考えられます。

 ( Z=R+jX , 1/Z=Y=G+jB です。R=0 ならG=0 )

         

 こうした回路を分布定数回路といいます。

 分布定数回路において,R=0 かつG=0 の極限の理想状態の回路,つまり,無損失回路を考えます。

 x から x+Δx までの間の電圧変化をΔe とすると ,e+Δe =e-(LΔx) (∂i/∂t) であり,また電流上昇をΔi とすると i+Δi= i-(CΔx) (∂e/∂t) と書くことができます。

 これら2つの式は,∂e/∂x=-L(∂i/∂t),および∂i/∂x=-C(∂e/∂t)となります。これらの式をまとめると,∂2i/∂t2={1/(LC)} (∂2i/∂x2)となりますが,これは位相速度がv=1/(LC)1/2の波動方程式です。

 したがって,電流は波動として,この速度 v で伝送されます。

 電圧も全く同様な方程式に従う波として伝送されますから,この v が「電気の伝わる速さ」と同定されます。

 特に2本の平行導線の断面が同じ半径 r (m),の円で,それら導線間の中心間の距離が d (m)なら,導線の表面だけを電荷が流れるとして計算すると,

 L=(μ/π)log(d/r) (H/m), C=πε/log(d/r) (F/m) なので, v=1/(LC)1/2=1/(με)1/2となることがわかります。

 ここにεは誘電率です。

 特にμとεが真空中と同じ値(μ=μ0,ε=ε0)なら ,v は光速 cに一致します。

 つまり,電流は実質的には蟻の歩く速さのように遅いにも関わらず,回路に何のエネルギー損失も無い理想的な場合なら,「電気の伝わる速さ」は真空中の光速cに等しいことになります

http://fphys.nifty.com/(ニフティ「物理フォーラム」サブマネージャー)                                                  TOSHI

http://blog.with2.net/link.php?269343(ブログ・ランキングの投票)

  

|

« ある日 | トップページ | 可逆と不可逆のはざ間(エントロピー増大則) »

119. 電気回路」カテゴリの記事

103. 電磁気学・光学」カテゴリの記事

コメント

コメントを書く



(ウェブ上には掲載しません)




トラックバック


この記事へのトラックバック一覧です: 電気の伝わる速さ(分布定数回路):

« ある日 | トップページ | 可逆と不可逆のはざ間(エントロピー増大則) »