« 将棋オフに行ってきました。 | トップページ | 毎年恒例の巣鴨盆踊り »

2009年7月24日 (金)

水の波(8)(有限振幅の波:非線形波3)

水の波の続きです。


 このシリーズは今日で終わりますが,非線形波やソリトンに

ついての話はまた別の題名でアップする予定です。


 前回最後では,K-dV方程式:

∂u/∂t+u(∂u/∂x)+μ(∂3u/∂x3)=0

の定常波の解を求めるために,

u(x,t)=u(ζ),ζ≡x-σtとして.

3階常微分方程式:

-σ(du/dζ)+u(du/dζ)+μ(d3u/dζ3)=0

に変形し,これの積分を求めました。


 
すなわち,1回積分すると,

μ(d2u/dζ2)=-u2/2+σu+2A(Aは積分定数)となり,

さらに,両辺にdu/dζを掛けて積分すると

(μ/2)(du/dζ)2=-u3/6+σu2/2+Au+B

(A,Bは積分定数) となります。

 この
両辺を6倍して右辺をf(u)とすると,これは

3μ(du/dζ)2=-u3+3σu2+6Au+6B≡f(u)

です。そして,この方程式が物理的に意味があるuの実数解

を持つのは,明らかにf(u)≧0 の範囲でのみです。

 
実係数の3次代数方程式:f(u)=0 は,必ず,1実根,または

3実根を持ちますが,この方程式が1実根のみを持つ場合には,

f(u)≧0 を値域とする解:uが有界でないため,

これは."有限範囲での振動=波"を表わす解ではありません。

そこで,ここでの考察では1実根のケースは対象外とします。

 
さて,f(u)=0 が3実根を持つとして,それらを

1,u2,u3 (u1≦u2≦u3)と書くと,

f(u)=(u-u1)(u-u2)(u3-u)です。

 

f(u)=-u3+3σu2+6Au+6B より,

σ=(u1+u2+u3)/3,A=-(u12+u23+u31)/6,

B=u123 /6 が成立します。


 
2≦u≦u3でf(u)≧0ですから,

3μ(du/dζ)2=f(u)なる式はuのこの区間を往復する

非線形振動を表わすと思われます。

 そこで,

 3μ(du/dζ)2=f(u)=(u-u1)(u-u2)(u3-u)

 の解で,u=u3でζ=0 となるものを求めます。

 つまり,方程式:

 dζ/(3μ)1/2=du/{(u-u1)(u-u2)(u3-u)}1/2

 を解きます。

 
まず,k2≡(u3-u2)/(u3-u1)とします。

さらに,t={(u3-u)/(u3-u2)}1/2とおくと

dt=(-1/2)(u3-u2)-1/2(u3-u)-1/2du です。

1-t21-(u3-u)/(u3-u2)=(u-u2)/(u3-u2),

1-k221-k2(u3-u)/(u3-u2)

1-(u3-u)/(u3-u1)=(u-u1)/(u3-u1) です。
 

故に,dt/{(1-t2)(1-k22)}1/2

(-1/2)(u3-u2)-1/2(u3-u)-1/2du

(u3-u2)1/2(u3-u1)1/2/{(u-u1)(u-u2)}1/2

=(-1/2)(u3-u1)1/2du/{(u-u1)(u-u2)(u3-u)}1/2

です。

 
そこで,方程式:

dζ/(3μ)1/2=du/{(u-u1)(u-u2)(u3-u)}1/2は,

{(u3-u1)/(12μ)}1/2dζ=dt/{(1-t2)(1-k22)}1/2

を意味します。

したがって,楕円積分F(x,k)を用いて

{(u3-u1)/(12μ)}1/2ζ=F({(u3-u)/(u3-u2)}1/2,k)

なる解の表式を得ます。

それ故,

sn({(u3-u1)/(12μ)}1/2ζ,k)={(u3-u)/(u3-u2)}1/2

です。そこで,

cn2({(u3-u1)/(12μ)}1/2ζ,k)

=1-sn2({(u3-u1)/(12μ)}1/2ζ,k)=(u-u2)/(u3-u2)

です。

 
(注8-1):snはヤコービ(Jacobi)の楕円関数:

sn(u,k)=F-1(u,k)=x≡sinφです。または,

u=F(x,k)です。

 F(x,k)は第1種の楕円積分で,

 F(x,k)≡∫0xdt/{(1-t2)(1-k22)}1/2

 =∫0φdθ/(1-k2sin2θ)1/2 で定義されます。

特に,K(k)≡F(π/2,k)は第1種の完全楕円積分と呼ばれ

4K(k)は楕円関数:snの2つの周期のうちの1つです。
 

さらに,sn(u,k)=x=sinφに対応して関数:cnを

cn(u,k)≡cosφ={1-sn2(u,k)}1/2で定義します。

これもJacobiの楕円関数と呼ばれています。

(注8-1終わり)※

 
さて,振動区間をU≡u3-u2とおけば,上に得られた解は

u(x,t)=u2+Ucn2({U/(12μk2)}1/2(x-σt),k)

と書けます。

ここで,σ=(u1+u2+u3)/3=u2+(u1+u3-2u2)/3

=u2+(2-k-2)U/3 です。

以上から,

u(x,t)=u2+Ucn2({U/(12μk2)}1/2[x

-{u2+(2-k-2)U/3}t],k) と書けます。

ただし,U=u3-u2,k2=(u3-u2)/(u3-u1) です。

この解は,周期関数cnで表現される定常波形を持つ波列を

表わしており,この意味でクノイド波(cnoidal wave)と

呼ばれます。

  クノイド波:

 u(x,t)=u2+U・cn2({U/(12μk2)}1/2

 [x-{u2+(2-k-2)U/3}t],k) は,

 速度u2の一様流の上に振幅がUの周期波cn2が重なった形

 をしており,周期波は一様流に相対的に位相速度:

 (2-k-2)U/3で進行するという様を表わしています。

 波形:cn2(s,k)は,パラメータk(0≦k≦1)の値に応じて,

 cn2(s,0)=cos2(s)からcn2(s,1)=sech2(s)まで

 変化します。

cnの周期は4Kですから,これに応じて波長λを

{U/(12μk2)}1/2λ≡4Kで定義すると,

これはλ=8K(3μk2/U)1/2 なる式で与えられます。

 以上では,前提なしで3実根u1,u2,u3 が全て異なる:

 u1<u2<u3と仮定しましたが,特にu2→u1の極限:

 u1=u2の重根の場合を想定すると,

 k2≡(u3-u2)/(u3-u1) より k=1です。

そこで,cn(s,k)=cn(s,1)=sechsより,この定常進行波

はu(x,t)=u1+Usech2[{U/(12μ)}1/2{x-(u1+U/3)t}],

U=u3-u1 となります。

この場合,解は波列でなく,定常波形がsech2の孤立波を

表わします。

 
この孤立波は振幅Uの平方根に反比例した拡がりを持ち,

一様流u=u1に相対的に,位相速度:U/3で進行します。

いま1つの極限:3→u2,つまりu2=u3の重根の場合は

k=0,かつU=0 なので.波はu=u3の一様流に

帰着します。

  
ただし,その重根の極限の近傍のk~0,U~0では,

U/k2=u3-u1より,定常解は,

u(x,t)~u2+(u3-u2)cos2[{U/(12μk2)}1/2(x-u1t)]

=u3+2u2sin[{(u3-u1)/(3μ)}1/2(x-u1t)]

となって微小振幅の正弦波となります。

 こうして,"Korteweg-deVries方程式=K-dV方程式"で記述

される有限振幅の長波のうちの定常進行波は,クノイド波,

または孤立波になることがわかりました。

 しかし,一般に任意の初期条件から出発した非定常の波が,

 これらの定常解に漸近するとは限りません。

-dV方程式,および類似の非線形発展方程式の研究は

近年急速な発展を遂げ,特にK-dV方程式については,

かなり多くのことがわかっているようです。

ここでは孤立波に関する2,3の結果を紹介します。

初期条件が三角関数:u(x,0)=cosπxのK-dV方程式:

∂u/∂t+u(∂u/∂x)+μ(∂3u/∂x3)=0

の初期値問題はZabuskyとKruskal(1965)によって数値的

に解かれました。

特にμ=0 なら,数値計算に頼らずとも,解は

u=cos[π(x-ut)] となることがわかります。

(注8-2):u(x,t)≡cos[π{x-σ(x,t)t}]

とおけば,これは,u(x,0)=cosπx を満たします。

そして,

∂u/∂t=π{σ+(∂σ/∂t)t}sin[π{x-σ(x,t)t}],

∂u/∂x=π{-1+(∂σ/∂x)t}sin[π{x-σ(x,t)t}]

ですから,

u/∂t+u(∂u/∂x)=0 は,
 
σ+(∂σ/∂t)t

+{-1+(∂σ/∂x)t}cos[π{x-σ(x,t)t}]=0

となります。

 
これから,t=0 ではσ=cosπx=u(x,0)を得ます。

すなわち,σ(x,0)=u(x,0)です。

 
そこで,σ=u=cos[π(x-σt)]とおいてみると,

σ+(∂σ/∂t)t

+{-1+(∂σ/∂x)t}cos[π{x-σ(x,t)t}]

=σ+(∂σ/∂t)t+{-1+(∂σ/∂x)t}σ

={∂σ/∂t+σ(∂σ/∂x)}t=0 となります。

よって,解の一意性から解はu=cos[π(x-ut)]です。

(注8-2終わり)※

 
μ=0 の解:u=cos[π(x-ut)]では,

∂u/∂x=π{-1+(∂u/∂x)t}sin[π(x-ut)]より,

[1-πtsin[π(x-ut)]](∂u/∂x)=-πsin[π(x-ut)]

となります。

 
この解は,t=tB1/πに点x=1/2の付近で突っ立ち:

|∂u/∂x|=∞という現象を呈し,その点以後のxでは

解は多価となって,物理的意味を持たなくなります。

ZabuskyとKruskal(1965)の数値計算は,μ1/2=0.022 に

おいて実行され,その結果得られた数値解は,やはり

t=tB付近で突っ立ちに近い状態を示します。

しかし,この場合はゼロでない分散項の効果により,波の重なり

は起こらず,逆に連続的な波が,いくつかの孤立波に分散します。

t=3.6tBでは,波形はほぼ完全に分離した孤立波の連なり

となりますが,これらの孤立波は,先に得られた定常波:

u(x,t)=u1+Usech2[{U/(12μ)}1/2{x-(u1+U/3)t}],

U=u3-u1と同じものであることが,その振幅,幅,進行速度

の関係から確かめられます。

 
-dV方程式に従う有限振幅波がある場合に,いくつかの

孤立波の集まりになってしまうとすれば,これらの孤立波の

間には,どのような相互作用が働くでしょうか?

孤立波の位相速度は振幅に比例するので,ある時刻に大振幅

の波を左に,小振幅の波を右にして,互いに十分遠く離して

おいたとすれば,大振幅波が小振幅波に近づき,ついには

追いつくと予想されます。

Zabusky(1967)は初期条件として,uj(x,0)=Ujsech2(x/Dj),

j≡(12μ/Uj)1/2の形を持つ2つの孤立波:uj(x,t)

(j=1,2)を取り,それぞれの振幅をU1=180,U2=80として,

初期に距離を12D1(D1=(12μ/U1)1/2=(μ/15)1/2)だけ

隔てて置きました。

 
そして,小振幅の方の波が静止するように,さらに

1=-26+2/3 の一様流を加えました。

 
数値計算の結果として得られた2つの波は,重なる以前は

互いに独立に運動しますが,

  驚くべきことに衝突以後に再び
分離して,衝突前と同じ

大きさと形と位相速度で運動を続けます。
 

衝突の影響は,僅かに両者の位相の変化となって残るだけです。

2つの波が初期と同じ間隔12D1だけ離れたときの振幅の変化

は,僅かにΔU1/U1<0.07%,ΔU2/U2<0.5%なることが

見出されました。

   
このように,K-dV方程式の孤立波解が,あたかも独立の

粒子であるかのように挙動するという結果から,この孤立波

ソリトン(soliton)と名付けました。

 非線形波動の現象は,水の波に限らずプラズマ振動,

さらに,素粒子のモデルなどと関連して研究者の興味を

集めており,非線形現象の解明と数学的理論の開発の

両面にわたってその発展が期待されます。

 水の波の話から自然にソリトンを紹介するという所期

の目的が達せられたので,水の波の記事シリーズを

これで終わります。

(
参考文献):巽友正著「流体力学」(培風館)
 

http://folomy.jp/heart/

現在:「folomy 物理フォーラム」サブマネージャーです。

人気blogランキングへ ← クリックして投票してください。
(1クリック=1投票です。1人1日1投票しかできません。

クリックすると人気blogランキングに跳びます。)

にほんブログ村 科学ブログへ にほんブログ村 科学ブログ 物理学へクリックして投票してください。
(ブログ村科学ブログランキング投票です。1クリック=1投票です。
1人1日1投票しかできません。
クリックするとブログ村の

人気ランキング一覧のホ-ムページに跳びます。)

http://www.mediator.co.jp/category/pages.php?id=115

「中古パソコン!メディエーター巣鴨店」

iconDell-個人のお客様ページ
(Dellの100円パソコン(Mini9)↓私も注文しました。)

デル株式会社

ベルーナネット(RyuRyu)  ベルーナネット

ヤーマン プラチナゲルマローラー 1日3分コロコロエステ!ローラー型プラチナ配合美顔器  

ブックオフオンライン 

お売りください。ブックオフオンラインのインターネット買取 展開へ! ▼コミック 尾田栄一郎 「ONE PIECE(52)」 icon ▼コミック 「ONE PIECE」をオトナ買い icon

三国志特集 ▼コミック 横山光輝 「三国志全巻セット」 icon 「三国志(文庫版)全巻セット」 icon  「三国志(ワイド版)全巻セット」 icon  ▼書籍 「三国志」/吉川英治 icon  「三国志」/北方謙三 icon  「三国志」/宮城谷昌光

iconオンライン書店 boople.com(ブープル)

|

« 将棋オフに行ってきました。 | トップページ | 毎年恒例の巣鴨盆踊り »

308. 微分方程式」カテゴリの記事

108. 連続体・流体力学」カテゴリの記事

コメント

この記事へのコメントは終了しました。

トラックバック


この記事へのトラックバック一覧です: 水の波(8)(有限振幅の波:非線形波3):

« 将棋オフに行ってきました。 | トップページ | 毎年恒例の巣鴨盆踊り »