積分方程式(1)(導入)
まず,本記事を書くに至った動機として,これまで書いてきた「束縛状態とベーテ・サルピーター方程式」(1)~(9)のシリーズ記事の中で,特に「束縛状態とベーテ・サルピーター方程式(1)」の内容を抜粋して要約します。
※(要約):
ベーテ・サルピーター方程式(Bethe-Salpeter equation),略してB-S.eq.はa,b2粒子の散乱の4点グリーン関数G(xa,xb;ya,yb)=<0|T(φa(xa)φb(xb)φa+(ya)φb+(yb))|0>に対し,G(xa,xb;ya,yb)=⊿Fa'(xa-ya)⊿Fb'(xb-yb)+∫d4za∫d4zb∫d4za'∫d4zb'⊿Fa'(xa-za)⊿Fb'(xb-zb)I(za,zb;za',zb')G(za',zb';ya,yb)で与えられる積分方程式です。
ただし,⊿F'(x-y)は修正された(真の)伝播関数(2点グリーン関数)で,一般にスカラー場φ(x)に対しては⊿F'(x-y)≡<0|T(φ(x)φ+(y))|0>で定義されます。TはT積(時間順序積)です。
また,I(xa,xb;ya,yb)は,4点グリーン関数Gから4つの"粒子外線=外部伝播関数"を切り離した"相互作用のblob=(a+b)中間状態"の中から2つの"内線=伝播関数"を除くだけでは互いに素な2つの部分に分割不可能な固有グラフ,つまり"2粒子既約部分=(a+b)-既約な積分核"の部分です。
理論は平行移動不変なので,"平行移動の生成子(generators)=2粒子a,bの総4元運動量P^μ"が存在して,φα(x)=exp(iP^x)φα(0)exp(-iP^x),φα+(x)=exp(iP^x)φα+(0)exp(-iP^x)(α=a,b),P^μ|0>=0です。
T積の性質から,G(xa,xb;ya,yb)はxa-xb,-ya+yb,xa-ya,xb-yb,xa-yb,xb-yaなる全ての座標の差の関数であることがわかります。これらのうち,独立なものを1次結合で作ります。
結局,xa-xb,-ya+yb,ηa(xa-ya)+ηb(xb-yb)(ηa,ηbはηa+ηb=1の任意に固定した実定数)で与えられる3つの変数が独立であることがわかります。
そして,I(xa,xb;ya,yb)もGと同様xa-xb,-ya+yb,ηa(xa-ya)+ηb(xb-yb)の関数です。
結局,B-S.eq.は運動量表示ではG(p,q,P)=δ4(p-q)⊿Fa'(ηaP+p)⊿Fb'(ηbP-p)+⊿Fa'(ηaP+p)⊿Fb'(ηbP-p)(2π)-4∫d4p'I(p,p';P)G(p',q;P),または[⊿Fa'(ηaP+p)⊿Fb'(ηbP-p)]-1G(p,q,P)=δ4(p-q)+(2π)-4∫d4p'I(p,p';P)G(p',q;P)となります。
これは,記号的にはKG=1+IGと書けます。
しかし,この簡単な等式が実は"時空座標表示=x-表示"での積分方程式G(xa,xb;ya,yb)=⊿Fa'(xa-ya)⊿Fb'(xb-yb)+∫d4za∫d4zb∫d4za'∫d4zb'⊿Fa'(xa-za)⊿Fb'(xb-zb)I(za,zb;za',zb')G(za',zb';ya,yb)を意味しています。(要約終わり)※
量子論の基本方程式は,定常状態ならハミルトニアンをHとしてエネルギーの固有値方程式:H|ψ>=E|ψ>で与えられますが,これはx表示ではHは線形微分作用素(演算子),ψはxの関数(波動関数)ψ(x)となり,Hψ=Eψなる形の微分方程式となります。
つまり,x表示の量子論の方程式は,一般にLを線形微分作用素,λを固有値とするxの関数φ=φ(x)に対する線形微分方程式Lφ=λφの形をしています。
そして,通常のLの逆作用素L-1が存在する場合には,微分方程式:Lφ=λφは形式的に解くことができて,φ=f+λL-1φなる形の解を得ることができます。
Lが微分作用素なのでL-1は微分の逆演算である積分作用素です。したがって,φ=f+λL-1φは積分方程式(integral equation)です。
結局,線形微分方程式:Lφ=λφの初期値-境界値問題を解くと,常に積分方程式φ=f+λL-1φが得られます。逆に,これを微分すると元の微分方程式を得ます。
すなわち,元々は抽象ヒルベルト空間のべクトルに作用する作用素としての形で表現されたL|φ>=λ|φ>なる固有値方程式を,位置座標表示や運動量表示など種々の表示で表現したとき,これは微分方程式にも積分方程式にも表現できて,両者は等価です。
(微分方程式と積分方程式の表現は互いに逆問題ともいわれます。)
Lは系のある対称性変換に対する不変性に関わるネーター(Noether)保存量であって,この変換の生成子に相当します。
これらは一般に現実の時空の対称性である時間,空間の一様性に関わる平行移動変換群の生成子としてのハミルトニアン(エネルギー)と運動量,また,空間の等方性(回転群)に関わる生成子としての角運動量,
そして,内部空間である荷電空間(アイソスピン空間)の回転群の生成子である電荷(アイソスピン)などのように常に観測可能な物理量(obserbavle)に対応しています。
数学という側面で見ると,結局,"量子論というのは表示と表示の間の変換性がその本質であって表示と変換の理論である。"というように結論して,大風呂敷を広げることもできます。
実際,量子論の基礎を学んでいくと,我々は知らず知らずのうちにヒルベルト空間やバナッハ空間など状態空間を与える線形空間のベクトルとそれに作用する線形作用素に関し,固有ベクトルによるスペクトル展開などの拡張されたフーリエ理論や超関数と関わる関数解析という数学の1分野に慣れ親しむようになっています。
そして,状態空間のベクトルのx表示では固有値方程式はシュレーディンガー,ディラック,クライン・ゴルドンなどを含む線形偏微分方程式になり,それらの境界値問題を解くのが量子論の主要問題になります。
そして,線形微分方程式を定める線形微分作用素(線形演算子)の超関数的な逆作用素(逆演算子:inverse)をグリーン関数を積分核(kernel)として積分表現をする手法などに慣らされているので,偏微分方程式と等価に見える積分方程式についても,その基礎理論や解法についてわかっているつもりになっていました。
しかし,最近,B-S.eq.やその関連の論文を読む中で,単なる計算式のチェックに何日もかかり遅々として進まないのは,実はVorterra型やFredholm型など積分方程式関連の基本的事項について,私自身が本格的に勉強したことがなく理解できてないことがその原因ではないか?と思い当たる節があったので,少しの間,数学に寄り道をして積分方程式を真剣に学ぼうと思ったわけです。
そこで,積ん読で読んだことがないと記憶していますが比較的物理数学に近くて古い記述の,吉田耕作著の岩波全書「積分方程式の解法」を所持していたことを思い出して自分の本棚を探して見ました。
しかし,どうもこれも古本屋に売ってしまったらしく,取り合えず手元にあった上村豊著「積分方程式(逆問題の視点から)」(共立出版)というやや現代数学的色彩の本を参照することにしました。
まず,積分方程式の起源としてアーベル(Abel)が1823~1826年頃に扱ったという積分方程式から見てみます。
これは,∫axdy{φ(y)/(x-y)1-α}=f(x) (a<x<b)という方程式です。これをアーベルの積分方程式,またはアーベル型の積分方程式といいます。
ただし,方程式の対象である未知関数はφ(x)であり,f(x)は予め与えられた既知の関数です。
また,パラメータαは 0<α<1を満たすある定数で,一方a,bは-∞<a<b≦∞を満たします。
これは,アーベルに従えば次のようにして解けることがわかります。
まず,∫axdy/(x-y)α∫aydz{φ(z)/(y-z)1-α}=∫axdy{f(y)/(x-y)α}と変形します。
左辺でyとzの積分順序を交換すれば,∫axdzφ(z)∫zxdy/{(x-y)α(y-z)1-α}=∫axdy{f(y)/(x-y)α}となります。
さらに,∫zxdy/{(x-y)α(y-z)1-α}において積分変数をyからζ=(y-z)/(x-z)に置換すると,dζ=dy/(x-z)であり,yのz→xの変動に対してζは0→1と変動します。
結局,具体的計算結果として∫zxdy/{(x-y)α(y-z)1-α}=∫01dζ/{(1-ζ)αζ1-α}=Β(α,1-α)を得ます。
ここで,Β(x,y)はオイラー(Euler)のベータ関数でΒ(x,y)≡∫01{tx-1(1-t)y-1}=Β(y,x)=Γ(x)Γ(y)/Γ(x+y)で定義されます。Γ(x)はオイラーのガンマ関数です。
したがって,元の積分方程式はΒ(α,1-α)∫axdzφ(z)=∫axdy{f(y)/(x-y)α}となります。
すなわち,φ(x)={Β(α,1-α)}-1(d/dx)[∫axdy{f(y)/(x-y)α}]となって,解φの表式を得ることができます。
ただし,右辺の積分式とその微分が有限に確定するためにはf(x)に何らかの条件が必要です。
fが十分滑らかな関数なら,部分積分により(d/dx)[∫axdy{f(y)/(x-y)α}]=f(a)/(x-a)α+∫axdy{f'(y)/(x-y)α}となることが期待されます。f'はfの導関数(微分係数)です。
以上がアーベルの積分方程式の解法です。
アーベルにとって,これは次の問題が動機であったらしいです。
すなわち,"ある質点が曲線Cに沿って,そのC上のある点Aから定点Oまで初速ゼロで重力のみの作用を受けて摩擦なしで滑り降りるときの所要時間Tが与えられたとき,この曲線Cを決定するにはどうしたらよいか?"という物理学の問題です。
(例えば,曲線Cがある角度で傾いた斜面を表わす直線なら,Tは高校物理でも習うような斜面を滑り降りる物体が頂上から下に到達する時間だし,また錘を糸の先につけた振り子ならCは糸の長さLを半径とする円であって,Tは振り子の周期に関係する時間ですね。)
yz平面(zが水平方向,yが鉛直高さ方向)の上の曲線Cがz=ψ(y)で表わされるとし,点Aの高さをxとします。時刻tにおいて質量がmの質点(y(t),z(t))の速度はv(t)=(dy/dt,dz/dt)なので速さはv(t)={(dy/dt)2+(dz/dt)2}1/2です。
重力加速度をgとすると,最初の時刻t=0 ではy(t)=xで初速がv(t)=0 なので,この重力による運動でのエネルギーの保存則は(1/2)mv(t)2=mg{x-y(t)}となります。
一方,速度ベクトルは曲線C:z=ψ(y)の上ではv(t)=(dy/dt,dz/dt)=(dy/dt,ψ'(y)(dy/dt))です。
そこで,v(t)2=(dy/dt)2+(dz/dt)2={1+ψ'(y)2}(dy/dt)2によって{1+ψ'(y)2}(dy/dt)2=2g(x-y)です。
それ故,dy/dt=-{2g(x-y)}1/2/{1+ψ'(y)2}1/2,またはdt=-[{1+ψ'(y)2}1/2/{2g(x-y)}]1/2dyです。
そこで,到達すべき終点Oの高さをaとすると,T=∫axdy[{1+ψ'(y)2}1/2/{2g(x-y)}]1/2と書けます。
この式は,始点Aを曲線C上の任意の点と考えて所要時間TをAの高さxの関数f(x)に書き直し,関数φをφ(y)≡{1+ψ'(y)2}1/2/(2g)1/2と定義すれば∫axdy{φ(y)/(x-y)1/2=f(x)になります。
こうして結局,アーベルの積分方程式∫axdy{φ(y)/(x-y)1-α}=f(x)のα=1/2とした特別な場合に当たることがわかります。
故に,これの解はφ(x)={Β(1/2,1/2)}-1(d/dx)[∫axdy{f(y)/(x-y)1/2}=π(d/dx)[∫axdy{f(y)/(x-y)1/2}]=πf(a)/(x-a)1/2+π∫axdy{f'(y)/(x-y)1/2}ですね。
ただし,yz平面上の曲線z=ψ(y)の表現という形式にこだわるなら,z=φ(y)={Β(1/2,1/2)}-1(d/dy)[∫aydw{f(w)/(y-w)1/2}=π(d/dy)[∫aydw{f(w)/(y-w)1/2}=πf(a)/(y-a)1/2+π∫aydw{f'(w)/(y-w)1/2}と書くべきかも知れません。
物理学では,"時間T=f(x)が最小になる曲線Cを決定する。"という有名な"最速降下線の問題"があって,設定はアーベルのそれとよく似ていますが,こちらの方は"最小作用の定理"などと同じく変分の問題でラグランジュ方程式を作って解くのと同じような方法で解くことができて,解はサイクロイド(cycloid)曲線になることがわかっています。
ちなみに,極座標での角度がθ=0 のときの初期高さがAのサイクロイド曲線はyz平面ではz=A(θ-sinθ),y=A(1-cosθ)です。
サイクロイド曲線Cは,z=ψ(y)なる表現ではC上の各点における勾配がψ'(y)=dz/dy=(1-cosθ)/sinθを満たしています。
積分方程式の導入(introduction),または考察の動機を述べることが中心の記事ということで今日はここまでにします。
現在Pendingになっているベーテ・サルピーターの方程式(B-S.eq.)関連の話題の続きは積分方程式の話が終わってからにします。
参考文献:上村豊著「積分方程式(逆問題の視点から)」(共立出版),Noboru Nakanishi "A General survey of the Theory of the Bethe-Salpeter Equation",Progress of Theoretical Physics, supplement,No.43(1969)
PS:選挙が終わって民主党大勝の8/31(月)朝の感想です。
今の,衆議院選挙でのある意味で政権交代が起こりやすく大政党候補者のみに有利な小選挙区に,真逆の,ある意味で投票者の死に票がほとんど生じなくて票が公平に反映されますが小党が乱立当選して議事表決がままならず法案が決まりにくい"大選挙区=比例代表区"を少し加えたような選挙制で勝ち負けがはっきり決まって,一方的になるというケースを2度続けて見ました。
しかし,過ぎたるは及ばざるがごとし,いっそのこと元の両方折衷のなつかしい中選挙区だけに戻した方がベターなのじゃないでしょうか?
もっとも,私の本音は選挙制度を知ったばかりの昔から,その欠点を承知の上で選挙するなら完全な意味での"大選挙区=比例代表区"だけでいいという思想ですが。。。
いずれにしろ,水を差すようですが"権力を握ればそれは必ず腐敗する。"(←トロツキーの永久革命論?)ので,長期にならないように交代する,あるいは有権者が交代させることが必要でしょう。
自民党だって,これほど長期でなければ腐敗とか癒着とかはなかっただろうと思います。
知事など自治体首長には多選を避けて2期も勤めれば自ら勇退して,次は後進に道を譲るという思想もあるようですが。。。。
← クリックして投票してください。(1クリック=1投票です。1人1日1投票しかできません。クリックすると「人気blogランキング」に跳びます。)
← クリックして投票してください。(ブログ村科学ブログランキング投票です。1クリック=1投票です。1人1日1投票しかできません。クリックするとブログ村の人気ランキング一覧のホ-ムページームに跳びます。)
http://www.mediator.co.jp/category/pages.php?id=115「中古パソコン!メディエーター巣鴨店」
ヤーマン プラチナゲルマローラー 1日3分コロコロエステ!ローラー型プラチナ配合美顔器
お売りください。ブックオフオンラインのインターネット買取 展開へ! ▼コミック 尾田栄一郎 「ONE PIECE(52)」 ▼コミック 「ONE PIECE」をオトナ買い
三国志特集 ▼コミック 横山光輝 「三国志全巻セット」 「三国志(文庫版)全巻セット」 「三国志(ワイド版)全巻セット」 ▼書籍 「三国志」/吉川英治 「三国志」/北方謙三 「三国志」/宮城谷昌光
予約】セックス・アンド・ザ・シティ ザ・ムービー コレクターズ・エディション<限定盤>
| 固定リンク
| コメント (0)
| トラックバック (0)
最近のコメント