« リオ五輪。。卓球女子団体。。銅メダル | トップページ | 訃報!十勝花子さん。。 »

2016年8月23日 (火)

クライン・ゴルドン方程式(7)

クライン・ゴルドン方程式(Klein-Gordon eq.)の続きです。
 

今回は,Dirac方程式と同じく,lein-Gordon方程式に

ついても 非相対論的近似を与えて確率解釈できるという

ことについて記述します。
 

§9.7 クライン・ゴルドン方程式の非相対論極限変形と解釈 

(Nonrelativistic Reduction and Interpretation of  

Klein-Gordon Equation)
 

ここまで論じてきたKlein-Gordon方程式に従うπ中間子

について,1粒子の従来の確率解釈を持った(非相対論的)

量子力学による近似的な記述が求められるような物理的

状況が存在します。
 

例えば,π中間子で構成された原子とか,物質内の原子の

電磁場や外場と荷電π中間子の相互作用などが,こうした

観点から研究できます。
 

これらは1粒子のDiracの電子論が成功裡に適用され,解釈

されてきた際の物理的状況に類似しています。
 

こうしたケースについて,古典的対応の極限だけではなく

Schroedinger方程式への非相対論的な帰着と解釈を示したい

と考えます。
 

確率解釈を持つ正確な1粒子の(相対論的)量子力学を構成

することは不可能である。ということに直面して,最初の章

ではこの2次のKlein-Gordon方程式を捨てるという方向へ

と誘導されました。
 

そして,非相対論的Schrooedinger理論におけるように,時間

ついて1次の導関数のみを含む方程式の形の,Dirac方程式

基本方程式として採用する道を選択したのでした。
 

しかしながら,今までにDirac方程式の1粒子像では,

正エネルギーと負エネルギーのスペクトルの間には広い

ギャップ2mc2,なお.残っていて,弱く,ゆっくり

と変動する場のような限られた環境の中でのみ,

正エネルギー粒子状態で生き残れることを見てきました。
 

しかし,今や,代わって一旦は捨てたKlein-Gorson方程式

の適切な1粒子量子力学像を探索すべき状況に至っている

と思われます。
 

Klein-Gordon方程式を1次の時間微分のみを含む

Scheordinger方程式の形へと,近似的に変形すること

を試みます。
 

その最初のステップは,(□+μ2)φ=0 を1次の方程式

のペアに書き直すことです。
 

これは,ξ=φd≡∂φ/∂tと書き,(□+μ2)φ=0, 

ξd=∂ξ/∂t=(2-μ2)φと書き直すことでなすこと 

ができます。
 

これで目論見通り,時間微分についての2次方程式:

(□+μ2)φ=0 を,ξ=∂φ/∂t,∂ξ/∂t=(2-μ2)φ

という1次方程式のペア=連立1次方程式に書き直すことが

できたわけでず。
 

次に,θ=(φ+iφd/μ)/2,χ=(φ-iφd/μ)/2という 

2つのφとφd=∂φ/∂tの線形結合を導入します。
 

この,θとχは単純な非相対論的極限で解釈できる描像を持つ 

ことがわかります。
 

すなわち,質量μで静止した粒子では,∇φ=0 (0)なので, 

(□+μ2)φ=0 ,2φ/∂t2=-μ2φ と書けます。
 

これの正エネルギー粒子(正質量)の解は, 

φ ∝ exp(iμt)iφd/μとなるため, 

θ=φ ∝ exp(iμt),かつ,χ=0 です。
 

一方,負エネルギー粒子(負質量)の解は,

φ ∝ exp(iμt)=-iφd/μとなり,逆に,

θ=0,かつ,χ=φ ∝ exp(iμt) です。
 

したがって,Dirac方程式の4成分スピノルを2成分ごと

に分解した際の大成分,小成分た類似した役割を,ここでの

θ,χが果たしていると見えます。
 

(7-1):質量がμでスピンが1/2の粒子なら,それが

満たすDirac方程式は(iγμμ-μ)ψ=0です。
 

その際,非相対論的極限でのDirac粒子の近似的な1粒子描像

を見るため,正確な解である4成分スピノル:ψを,ψ=[θ,χ]T

なる形に分解,2成分スピノル;θ,χをψが正エネルギー解

の場合のそれぞれの大きさに基づいて,それぞれ,大成分,小成分

と呼んだのでした。  (7-1終わり)
 

さて,θ=(φ+iφd/μ)/2,χ=(φ-iφd/μ)/2によって 

Klein-Gordon方程式:∂φd/∂t=(2-μ2)φ は, 

i(∂θ/∂t)=-∇2(θ+χ)/(2μ)+μθ, 

i(∂χ/∂t)=+∇2(θ+χ)/(2μ)-μχ 

と分解されます。
 

(7-2):φ=θ+χ,φd=-iμ(θ-χ)より,  

φd=∂φ/∂tは,{(θ+χ)/∂t}=-iμ(θ-χ)
 

∂φd/∂t=(2-μ2)φ は, 

{(θ-χ)/∂t}iμ-1(2-μ2)(θ+χ) 

と書けます。
 

得られたものを,辺々加えて2で割ると 

i(∂θ/∂t)=-∇2(θ+χ)/(2μ)+μθ,
 

一方,前者から後者を引いて2で割ると

i(∂χ/∂t)=+∇2(θ+χ)/(2μ)-μχ 

が得られるわけです。  (7-2終わり)
 

ここで,よりcompactな形式を得るため,θ,χを2つの成分 

とする縦ベクトル表示を導入します。
 

すなわち,波動関数φの代わりに.φ[θ,χ]Tとして,

波動方程式を見掛け上,Schroedinger型の方程式:

i(φ/∂t)0φとするわけです。
 

このとき,Hamiltonian:0,,Bを2×2行列として 

0{-∇2/(2μ)}+μと定義されます。
 

ここでAは1行目が[1,1],2行目が[1,1]の行列,

Bは対角成分が1とー1の対角行列です。
 

i(φ/∂t)0φSchroedinger形ですが,

(□+μ2)φ=0 アナロジーとして得られたもので,

保存する正定置の確率という描像には至りません。
 

これは0Hermite演算子ではないからです。
 

(7-3):i(φ/∂t)0Φから,

-i(φ/∂t)=Φ0なので,

i∂(φφ)/∂t

{φ(φ/∂t)+i(φ/∂t)φ} 

φ(00)φ です。
 

それ故,0Hermite:00なら

∂∂(φφ)/∂t)/∂t=0 

が成立し,:(φφ)を保存される正定置な確率密度

と解釈することができるのですが0Hermite:でないなら,

(φφ)が時間的に保存される,という保証はありません。
 

行列演算子として0{-∇2/(2μ)}+μBについて

0(0)T0が成立しない理由は,対角行列でない

Aに原因があって,これはφ[θ,χ]Tの大成分θと小成分

χを混合させます。
 

ゆっくり運動している粒子(=-i∇ ~ 0)に対する最低次

の近似で∇2を無視すれば,0~μとなって,これはHermite行列

なのでi(φ/∂t)0φは確率解釈可能なSchroedinger方程式

となり,


   
先に与えたKlein-Gordon方程式の静止状態の解: 

θ=φ ∝ exp(iμt),χ=0,および,

θ=0,χ=φ ∝ exp(iμt)がそれぞれ,

i(φ/∂t)0φφ[θ,χ]Tの正エネルギー 

(正振動数)の解, 負エネルギー(負振動数)の確率解釈可能

な解となっています。
 

Dirac理論から,直接,Foldy-Wouthuysen変換のテクニック

を借用することによって,系統的に運動エネルギー項の存在

による補正を導入します。
 

4×4行列βのアナロジーとして対角成分が1,-1の2×2

対角行列:ηを導入します。また,反対角成分がσ,-σk

反対角行列:α(k=1,2,3)のアナロジーで,反対角成分が

,-1の2×2反対角行列:ρを導入します。
 

Dirac理論の非相対論極限近似を求める際に用いた大成分

と小成分を混合させるodd演算子を除去するユニタリ変換

の演算子:Fexp(i)のアナロジーで,π中間子の波動関数

2成分縦ベクトル表示:φφ'=exp(i)φなる変換を実行

します。
 

単刀直入に結論を述べると,S=ηρθ(),

θ()=-(i/2)Tanh-1[{2/(2μ)}/{μ+2/(2μ)}] 

と置けば,Hamiltonian:0(ηρ){2/(2μ)}+μη

からodd演算子ρを除去できます。
 

(7-2):i(φ/∂t)0φ,φ'=exp(i)φより, 

Sがtに依存しないなら,i(φ'/∂t)exp(i)0φ

exp(i)0exp(i)φ'0'φ',

0'=exp(i)0exp(i)です。
 

0(ηρ){-∇2/(2μ)}+μη

(ηρ){2/(2μ)}+μη ですが,ηρθと

おくとき,θがの関数θ=Θ()なら, 

[θ(),2]0,[θ(),μ]0ですが, 可換ではない

行列の係数があるため,[,0]0 ではないです。
 

そして,S=ηρθなら(ηρ)21なので, 

exp(i)=Σn=0(1/!)(iηρθ)n 

=Σk=0[{1/(2)!(1)θ2k

(iηρ){1/(2k+1)!}(1)θ2k1} 

=cosθ+(iηρ)sinθです。
 

同様にexp(i)cosθ-(iηρ)sinθです。
 

0'exp(i)0exp(i) 

=[{2/(2μ)}{cosθ(iηρ)sinθ}(ηρ)

{cosθ-(iηρ)sinθ} 

+μ{cosθ+(iηρ)sinθ}η{ cosθ-(iηρ)sinθ}
 

具体的な計算から,exp(i)ηexp(i)

ηcos(2θ)(iρ)sin(2θ),

exp(i)ρexp(i)ρcos(2θ)(iη)sin(2θ) です。

したがって,H0'exp(i)0exp(i) 

η[{2/(2μ)+μ}cos(2θ)i{2/(2μ)}sin(2θ)] 

+ρ[({2/(2μ)}cos(2θ)i{2/(2μ)+μ}sin(2θ)]

です。
 

ρの係数がゼロ:つまり, 

({2/(2μ)}cos(2θ)i{2/(2μ)+μ}sin(2θ)0 

となるような, 

isin(2θ)/cos(2θ){2/(2μ)}/{μ+2/(2μ)} 

を満たすθが存在すれば,そのθに対して行列ρは除去

できます。
 

しかし,そのような実数θは存在しません。

θが実数でなく純虚数:θ=-iω(ωは実数)であるとすれば

そうしたθが存在します。
 

ただし,そのときは,S=ηρθがHermiteではなく,

exp(i)はユニタリではありません。
 

すなわち,cos(2θ){exp(i2θ)exp(i2θ)}/2 

{exp(2ω)exp(2ω)}/2cosh(2ω), 

isin(2θ){exp(i2θ)exp(i2θ)}/2 

{exp(2ω)exp(2ω)}/2sinh(2ω)

です、
 

よって,isin(2θ)/cos(2θ){2/(2μ)}/{μ+2/(2μ)} 

,sinh(2ω)/cosh(2ω){2/(2μ)}/{μ+2/(2μ)} 


  つまり,tanh(2ω){2/(2μ)}/{μ+2/(2μ)}
 

を意味します。
 

そのとき,0'exp(i)0exp(i) 

η[{2/(2μ)+μ}cosh(2ω){2/(2μ)}sinh(2ω)] 

ηcosh(2ω)[{2/(2μ)+μ}2{2/(2μ)} 2]

/{μ+2/(2μ)} です。
 

双曲線関数の公式:1/cosh2(2ω)1tanh2(2ω)より. 

1/cosh2(2ω)

[{2/(2μ)+μ}2{2/(2μ)}2]/{2/(2μ)+μ}2  

(2+μ2 )/{2/(2μ)+μ}2ですから,  

cosh(2ω){2/(2μ)+μ}/(2+μ2 )1/2

です。
 

ぃたがって, 

0' η[{2/(2μ)+μ}2{2/(2μ)} 2]/(2+μ2 )1/2 

η(2+μ2)/(2+μ2 )1/2η(2+μ2 )1/2 

を得ます。  (7-3終わり)
 

S=ηρθ(),

θ()=-(i/2)Tanh-1[{2/(2μ)}/{μ+2/(2μ)}] 

なら,≠SでありSはHermiteではないので,

U=exp(i)に対し,-1exp(i)≠Uexp(i)

であって.Uはユニタリでないため, 
 

0'= U0-1exp(i)0exp(i)η(2+μ2)1/2 

,φ'=Uφexp(i)φi(φ/∂t)0φのとき 

i(φ'/∂t)0'φ'は成立しますが,


  φ
'φ'=φφ
は成立せず,φφφ'φ'を確率密度

とする解釈は,非相対論での近似的な意味でしか成立しない

のでは?と思われます。
 

さて,0'η(2+μ2)1/2,i(φ'/∂t)0'φ'の形式

では.φ'の大成分=正エネルギー解と,小成分=負エネルギー

解は完全に分離され,エネルギー・運動量の関係は自由電子

に対するそれと同じです。
 

電子との唯一の違いはスピン自由度に対する解の二重化が

ないことです。
 

正エネルギー解をφ'()

φ(+)()exp(iωpt)(+)()[1,0]Tとします。

すると,

i(φ(+)/∂t)0'φ(+)η(2+μ2)1/2φ(+) 

,ωp(+)()(2+μ2)1/2(+)()

を意味します。
 

そして,このとき,(+)()=|(+)()|2が正エネルギー粒子

の存在確率密度を表わすと考えられ,

ωp=∫φ(+)()0'φ(+)()3が,粒子の正エネルギー 

の値を表わします。
 

同様に,負エネルギー解をφ'()

φ(-)()exp(iωpt)(-)()[0,1]Tとします。

すると,

i(φ(-)/∂t)0'φ(-)η(2+μ2)1/2φ(-) 

,-ωp(-)()=-(2+μ2)1/2(-)()

を意味します。
 

このとき,(-)()=|(-)()|2が負エネルギー粒子

の存在確率密度を表わすと考えられ,

-ωp=∫φ(-)()0'φ(-)()3がその粒子の

エネルギーを表わしていて,これは負になります。
 

ここで,φ(-)()exp(iωpt)(-)()[0,1]T,

正エネルギー固有値を持つ反粒子の波動関数と解釈

します。
 

i(φ(-)/∂t)0'φ(-)η(2+μ2)1/2φ(-)

複素共役をとってi(φ(-)/∂t)0'φ()

η(2+μ2 )1/2φ(-)であり,0'0'より

i(φ(-)/∂t)=-0'φ()=-η(2+μ2)1/2φ(-) 

です。

  これは,時間の過去に伝播する負エネルギー粒子の

複素共役が時間の未来に伝播する正エネルギー反粒子

という描像に合致します。
 

そして,自由粒子ではなくて外電磁場Aμ(x)がある

一般の場合には,もはやodd演算子を除去してHamiltonian

を対角化するSを求めることは不可能です。
 

しかし,この論議は次回にまわして今日はここで

終わります。
 

(参考文献):J.D.Bjorken & S.D.Drell著 

 "Relativistic QantumMechanics"(McGrawHill)

|

« リオ五輪。。卓球女子団体。。銅メダル | トップページ | 訃報!十勝花子さん。。 »

115. 素粒子論」カテゴリの記事

111. 量子論」カテゴリの記事

コメント

コメントを書く



(ウェブ上には掲載しません)




トラックバック


この記事へのトラックバック一覧です: クライン・ゴルドン方程式(7):

« リオ五輪。。卓球女子団体。。銅メダル | トップページ | 訃報!十勝花子さん。。 »