« )訃報!!荒川博さん。 | トップページ | 赤外発散の論文(1961)の詳解(2) »

2016年12月 5日 (月)

赤外発散の論文(1961)の詳解(1)

※ 10月初めに引っ越してから丁度2か月,

もう年の瀬となってしまいました
 

この間.本やノート類も大量にあった引っ越し荷物の整理にかまけて

通常の日記的ブログは書いても科学記事は敬遠してきました。

 しかし,
 そろそろ落ち着いてきたので,これも再開して元のペース

に戻ろうと思います。こういうこともやらないと,つい楽をして寝

たきりでもなりそうですし。。
 

実は,前の部屋の立ち退き話もまだ知らなかった7月頃に構想して,

9月くらいには少しずつ書いていた比較的新しいテーマ「赤外発散」

についての草稿があったので少し手直ししてこれからアップします。

相変わらず,素粒子論ネタですが。。※
 

さて,常識的には,実体がないのと同等で無意味と見えるにも関

わらす,素粒子の散乱振幅等の計算の上では無限大に発散する

著しい寄与を示す,エネルギーゼロ(振動数ゼロ,波長無限大)

光子の起こす困難を,赤外破局(Infrared Catastroph),または,

赤外発散と呼びます。

 恐らく,エネルギーが無限大(振動数無限大,波長ゼロ)の極限

での発散の困難を紫外発散(Ultraviolet Divergence)と呼ぶの

に対照して命名されたのでしょう。

 紫外発散の困難の方は.これを克服するために 1948年頃

から「くり込み理論(Renormalization)」と呼ばれる壮大な体系

が発展し,これは一応の解決を見ました。

(↑※Feynman,朝永,Schwinger、Dysonなどの仕事です。。)
 

これに対し,赤外発散の困難は,ある意味,こうした実体のない

光子などは元々存在しない。としてカットするのが,紫外発散

の高エネルギー光子をカット(切断)するという手法より感覚的

に容易なことと考えられたためか?,問題発見の当初から,

さほど深刻な問題と取られなかった節があります。
 

こうした赤外発散の困難については,本ブログでは,まず,

200612/16記事:「赤外発散の問題(エネルギーゼロの光子)

で紹介しました。

 
次に,この記事において紹介した1937年の初期の代表的論文; 

 F.Bloch A.Nordsieck

"Note on the Radiation Field of the Electron"について,

本ブログの201010/30,11/4,11/8の「赤外発散の初期論文」 

(1),(2),(3)においてで紹介し,解説しました。
 

この論文は,学生の頃から所持していて,ときどき,その読解に

挑戦していましたが,古い論文は,Notationも古典的で,現在では

普通に使用されている近代的な計算手法もまだ使われていなか

ったなどの理由もあり,何回読んでも途中で私には解読不能な箇所

に遭遇して,何度も挫折していました。
 

しかし,それ以前に中西㐮著「場の量子論」(培風館)など日本語

でのより読みやすい解説書などを読んで,摂動の低次まででは

赤外発散は計算上は相殺して,結果は有限値になって解消される

ことを理解していたこともあり,まあ,これが解読できなくても

仕方がないな,程度に軽く考えていました。

 
しかし,その後,2010年に,少しヒマがあってブログで紹介したい

という気持ちが生じて,本腰を入れて読んだので,ブログ記事

では何とか形になりましたが,未だにややスッキリしない感も

あります。
 

一方,同じ過去記事「赤外発散の問題(エネルギーゼロの光子)

において,赤外発散解決の決定板である,と書いた

Yenie,Frauti,Suura1961年の74ページに及ぶ論文の方は,

ブログを開始する3年前の20031/4から3/19までの2ヶ月余り

,根をつめて読了したときにまとめたノートがあります。
 

(※私のまとめたノートは,A4,本文84ページ+付録34ぺージに

なっていますから,元の英文より約5割増しですね。

どうしても翻訳すると元の英文より日本語文の方が長くなるし,

さらに行間を埋める自己流の注釈が一杯追加されていますからね。
 

.ある時期から,後で元文献を参照しなくてもノートだけで事

が足りるようにノートを作る習慣になっていました。

 今は眼が悪くなって,種となる本や論文
の字は小さく読みにくい

けど,ノートの自分の字は何とか見えるので,この習慣は今と

なっては正解でした。
 

本が紛失したとしても,お金さえあればまた入手可能なモノ

なので,さほどショックはない,と思うけれど,大事なノートが

無くなったら泣いちゃうかも。。※)
 

この論文の内容は,図で説明すべきことが多いのでここまで敬遠

していましたが,以前と違って,私も若干,自力で図を描くスキル

ができてきたので,このノートの内容もブログで紹介してみたい

と思ったわけです。
 

さて,正式なこの論文の表題は, 

”The Infrared Divergence and High Energy Processes” 

(赤外発散と高エネルギー過程) です。
 

著者は,D.R.Yennie,S.C.Frauchi,H.Suura  

出典は,Annuals of Physics Vol.13 pp279-452(1961)です。
 

以下は本文です。
 

※前文(Preface)
 

QED(量子電磁力学)における赤外発散の問題の一般的扱いを

与えます。

  
この本論文の扱いの主な特徴は,赤外発散の寄与を,摂動の全て

の次数までの寄与の掛け算因子と,赤外発散を持たない因子へ

残りの収束する摂動展開の寄与に分離することにあります。
 

その結果,赤外切断のような,処方,規約としてカットして

捨てるというような操作は無用となることがわかります。
 

赤外因子については,それは指数関数形を取りますが,実光子

と仮想光子から生じる指数発散が通常の意味で相殺します。
 

それ故,これらの因子は単に始状態,終状態の荷電粒子の運動量

,検知されない光子に用いられる位相空間領域にわたる積分

によって表現されます。

  
そして,これらは個々の相互作用の詳細に依存しません。
 

特に,扱いやすい静電ポテンシャルによる電子散乱については,

詳細に論じ,他の具体例については手短かに論じます。
 

 一般的扱いの重要な副産物として,赤外寄与を特殊な手法で分離

したとき,それらは高エネルギーの輻射補正と,ある”磁気項”を

支配し,真空偏極補正log(E/)に比例する,あらゆる寄与を

与えるように見えます。
 

 そして,こうした補正の全ては,(大抵の場合,)単に荷電粒子の

外線運動量の知識だけから容易に評価できます。
 

そこで,これは非常に強力で正確な高エネルギー過程の輻射補正

を評価する方法を提供します。
 

§1.序文(Introduction)
 

赤外発散問題を理解するための本質的考察は,20余年前に出版

されたBlochNordseekの有名な論文によって,初めてもたら

されました。

  
この論文での考察は,端的に言えば,荷電粒子を含むどの

ような実際の実験においても,系の終状態を完全に指定すること

は不可能であるということです。
 

個々の光子は,くらでも小さい任意のエネルギ-を持って放出

され得るので,(検出装置の精度限界もあるため)いくつかの光子

は検知を逃れる可能性が常にあります。
 

実際,この著者は有限個の光子が検知されない確率は厳密にゼロ

であることを示しました。

  これは,軟らかい仮想光子(soft virtual-photon)に関わる
赤外

発散のせいです。

(soft-photon(軟光子)とは,振動数が小さいエネルギーがほぼ

ゼロの光子を意味します。)

  
他方,非検知光子の可能性をも含む比較可能な全ての終状態に

わたる微分断面積の総和を取ると,これは消えない結果を与える

ことになります。

  
実際,彼らは観測される微分断面積は,あらゆる輻射補正を無視

したときに得られる断面積に非常に近い,ことを示しました。

これは,実光子の赤外発散と仮想光子のそれの間の相殺としてよく

知られています。
 

赤外発散現象の現代的な場理論による取扱いを与えることが

本論文の趣旨です。
 

ただし,完全な,歴史的なレビューを与える試みなどは全くしない

予定です。そうした過去のレビューや参考文献については,

Jauch-Roelich優れた論文(文献(2))を参照してください。
 

さて,以下の論理の方向を定める目的で,赤外発散現象を予言する 

準古典的議論を手短かに想起します。
 

例えば,運動中の電子がポテンシャルとの相互作用で進路を 

逸らされる。と仮定します。
 

電子に付随するLorentz収縮した場は衝突によって変化し,

その場の変化は電磁輻射として放出されます。十分長波長の

輻射については輻射の効果は散乱領域の詳細な知識がなくても

計算可能です。
 

それは,単に電子の始状態,終状態の運動量と,輻射が観測される

方向にのみ依存します。

(電子の散乱域で時間の遅れはないと仮定します。
 

よく知られているように,この長波長の極限では単位振動数

当たりに放出されるエネルギーは振動数に依存しません。
 

光子による記述に翻訳すれば,単位振動数当たりに放出される光子 

の数は振動数に反比例することが明らかです。

すなわち,光子スペクトルはdk/kの形をしているため,k→ 0では

発散します。
 

これが実光子による赤外発散現象です。
 

角分布もまた,準古典的論拠によって理解できます。

超相対論的極限では場は電荷の運動方向に垂直な平面の近傍の

小さな領域内にLorentz収縮して電荷に沿って動くと思われます。
 

これは運動電荷の入射()方向か,終方向のどちらかに平行な輻射

強いピークを示す,ということにつながります。
 

こうした特徴は,{(εp'/kp')(εp/kp)}..(1.1) 

となる式に比例する輻射放出の古典振幅,の中に現われています。
 

 これは,それぞれ,始状態,終状態の運動量p'のどちらかに

平行なについて,強いピークを示します。

  散乱が生じたと仮定するとき,運動量
の光子が放出される確率は

(1.1)を平方してそれに[(2π)32]-1を掛けることで得られます。
 

すなわち,k~k+dkの範囲の光子が放出される確率:

()3,

()3k ~{α/(2π)3}{(εp'/kp')(εp/kp)}2 

×dΩdk/..(1.2)なる形で与えられます。
 

この式は,k→ 0での典型的な赤外発散の挙動が(dk/)なる

因子として出現し,入射電子運動量:と散乱電子運動量:p'

方向のまわりで強い角度依存性のピ-クを作ることを示して

います。

   
光子の方向にわたって積分したエネルギーレンジ:dkへの

光子放出の確率は,2dk∫P()dΩ=dAdk/..(1.3)

です。

   
ここで,Aは,

A ~ (2/π)[ln{2(2pp’)/2}1] ..(1.4) 

で与えられる量です。
 

かくして,光子放出の確率はエネルギーEの増大と共に対数的

に増加します。これはまた,散乱角が大きいほど重要です。
 

このことは古典的論拠からも予期されることです。
 

何故なら,電子に付随する場は,小さい角度のずれの遷移に対し

より容易に調整することができるからです。
 

この問題についての正しい量子力学的扱いは,準古典的議論から

予測されるのと同じ定性的な特徴へと誘導されると予想する

のが理にかなっています。

    
非常に長い波長の極限に関心があるのですが,このプロセス

は空間の大きい領域での散乱粒子の挙動によって支配されます。 

(※運動量kのk~ 0の小空間は座標空間ではx~ ∞の大空間

に対応します。)
 

この波長の長い軟光子の放出,吸収は,目立つほどには荷電粒子

の運動を乱すことはありません。


   これは軟光子は独立に放出,吸収され,実光子,仮想光子の

双方について個数分布がPoisson分布に従うことを

意味します。
 

このことは何人かの著者が,散乱粒子の電流(カレント)

純粋に古典的に扱われる近似に基づいて赤外発散を扱うこと

につながりました。
 

これらの方法では輻射補正の無い粒子の運動が計算され,

輻射補正の動力学的効果は無視されています。

こうしたタイプの最も精密な扱いはLondonその共著者により,

文献()で与えられています。
 

彼らは硬光子による輻射補正の力学的効果も含めた定式化

を展開しました。
 

こうした準古典的方法では,常に硬光子と軟光子の間の

任意の手法の分離があります。軟光子の寄与は粒子運動への

力学的補正を無視して,全てのオーダーまで正確に扱われます

,一方,例えばLondonの扱いでは硬光子の効果は基本的な

断面積の計算に組み込まれ,摂動論のあるオーダーまで 

の近似計算です。

    
そこで,硬光子と軟光子の分離が生じる場所は,これに

よって生じる誤差を最小にするように選択されます。


     このアプローチの典型的な
結果として,notation

いくつかの違いはありますが,

Londonを引用すると,エネルギーがEの光子による断面積

σの形式は, 

σ(ΔE,,θ~(ΔE/εC)αAσn(ε,,θ)..(1.5)

です。
 

ただし,εは上記の分離する場所のエネルギー,ΔEは

検知器のエネルギー解像度, σnは光子エネルギーの

下切をεとする摂動のn次までの断面積,

CはEuler定数,θは散乱角です。
 

彼らは(1.5)式において,実際の状況では極めて1に近い

因子F(α,)を除外しています。

    
この因子は次節の(2.45)式で与える予定ですが,これは

最初,LondonShawより単純な関数で評価されました。
 

この評価計算は§2で再現します。(つづく)
 

§1の序文はまだ続くのですが,長くなったのでここで2つに

分けました。
 

なお,論文の一番最後の付録のそのまた後にまとめて,記載

されているReference(参考文献)を予めアップしておきます。
 

ここで一旦終わりますが原稿はできているので,すぐに続き

もアップします。
 

参考文献:
 

1.F.Blocn amd A.Nordsieck,Phys.Rev.vol.52,p54(1957) 

2.J.M.Jauch and F.Roelich.Helv.Phys.Arla,vol.27,p613

(1954);J.M.Jauch and F.Roelich. 

"Theory of Photons and Electrons"p360

(Addison Wesley Publishing,Co,Inc,Cambridge,

(1955) 

3.H.J.Glaubes.Phys.Rev.vol.84,p395(1951) 

W.Thirring and H.Touschek.Phyl.Mag.7、」vol.42,

p244(1951) 

4.E.L.London Nuclear Physics.vol.1,p101(1956) 

E.L.London Phys.Rev.vol.113,p726(1959) 

5.J.Schwinger.Phys.Rev.vol.76,p760(1949)

6.I.M.Brown and R.P.Feynman,Phys.Rev.vol.85,p231(1952) 

.M.R.Shafroth Helv.Physics.Arla.Vol.22,p501(1949)  

and Vol.23,p542(1950) 

7.R.G.Newton, Phys.Rev.vol.97,p1162(1955) 

M.Chretien, Phys.Rev.vol.98,p1515(1955) 

8.H.G.Suura, Phys.Rev.vol.99,p1020(1955): 

9.R.G.Newton, Phys.Rev.vol.97,p1162(1955): 

M.I.G.Redhead, Proc.Roy.Soc.A230,p219(1953): 

R.V.Polovin, J.Exptl.Theoret.Phys(U.S.S.R.)

vol.34,p440(1956):Soviet.Phys.JETP,Vol.4.p385(1957) 

G.Furlan and G.Peressutti,Nuovo ciment,

[10],Vol.15,p817(1960) 

10.Y.S.Tsai,Phys.Rev.(in press)

11.J.D.Bjorken,S.D.Drell,and.C.Frauchi,Phys.Rev.

vol.112,p1409(1958) 

12.P.I.Fomin,J.Exptl.Theoret.Phys.(U.S.S.R.)

vol.34,p1409(1958)

and vol.85,p707(1958);Soviet.Phys.JETP,Vol.156.p385

(1958) and vol.35,p491(1959) 

13.A.N.Mitra,P.Narayanaswamy.and .L.K.Pand

,Nucl.Phys.Vol.10,p629(1959) 

14.D.R.Yennie and.H.Suura,Phys.Rev.Vol.105,p1378(1957) 

15.N.Nakanishi,Progress Theoet.phys.Japan.Vol.19,
        p159(1958)

16.F.Low,Phys.Rev,Vol.110,p974(1958) 

17.A.Sommerfeld,"Atombau und undSpektrallijnien"

Babd.p.565F.Vieweg und Sohn Braunschweig,1939 

18.S.N.Gupta,Phys.Rev.Vol.98,p1502(1955)

and Vol.99,p1015(1955) 

19.H.Frauchi and D.R.Yennie,submitted to Nuclear Phys. 

20.G.RacaH,Nuovo ciment.Vol.11,p461(1934)

21.L.I.Schiff.Low,Phys.Rev,Vol.87,p760(1952) 

22.L.L.Foldy,K.W.Enau,and.R.Yennie,Phys.Rev,

Vol.113,p1147(1959) 

23.R.H.Dalitz,Proc.Pfys.Soc.A306,p600(1951) 

24.C.Kacser,Nupvo ciment,Vol.13,p303(1959) 

25.G.Kallen,Kpl.Dunske,Viedenskab.Selakab,

Mat-fys.Medd.27,No.12(1954) 

26.S.G.Dasiorowicz,D.R.Yennie,and .Suura,

Phys.Rev,Lett.Vol.2,p513(1950) 

27.K.Johnson,Phys.Rev,Vol.112,p1367(1958) 

28.G.Kallen,Zentr.Math,Vol.83,p225(1960) 

29.K.Johnson,and B.Sumino,Phys.Rev,Lett.

Vol.3,p351(1951:B.Zumino(peprint)) 

30.G.Kallen,In Proceding of the CERN.Symposium

on High-Energy Accelarators and Pion Physics Vol.,

p187,Europian Organization of Nuclear Research,Geneva

1956

31.S.Kamefuchi,Kgl Dunske Viedenskab.Selakab, 

Mat,fys. Medd.Vol.31,No.6(1957) 

32.J.C.Ward,Phys.Rev,Vol.77,p293(1950),Vol.78,p182(1950) 33.H.M.Fried,and D.R.Yennie,Phys.Rev,Vol.112,p1391(1958) 

34.A.A.Arrikosiv,J,Exptl,Theoret.Phys.(U.S.S.R.)

Vol.30,p96(1956),Soviet.Phys.JETP,Vol.3,p71(1956) 

I.P.Gorkov,J,Exptl,Theoret.Phys.(U.S.S.R.)

Vol.30,p790(1956),Soviet.Phys.JETP,Vol.3,p762(1956) 

R.V.Tevikian,J,Exptl,Theoret.Phys.(U.S.S.R.)

Vol.32,p1575(1957),Soviet.Phys.JETP,Vol.5,p1284(1957)
 

35.I.D.Landau and I.M.Kharatnikov,Theoret.Phys.

(U.S.S.R.) Vol.29,p89(1955),Soviet.Phys.JETP,

Vol.3,p762(1956)

36.R\P\Feynman,Phys.Rev.Vol.76,P769(1950) 

以上です。

|

« )訃報!!荒川博さん。 | トップページ | 赤外発散の論文(1961)の詳解(2) »

114 . 場理論・QED」カテゴリの記事

115. 素粒子論」カテゴリの記事

コメント

コメントを書く



(ウェブ上には掲載しません)




トラックバック

この記事のトラックバックURL:
http://app.f.cocolog-nifty.com/t/trackback/71281/68718372

この記事へのトラックバック一覧です: 赤外発散の論文(1961)の詳解(1):

« )訃報!!荒川博さん。 | トップページ | 赤外発散の論文(1961)の詳解(2) »