« ブログ開始から13周年 | トップページ | くりこみ理論(次元正則化)(5) »

2019年4月14日 (日)

くりこみ理論(次元正則化(4))

「くりこみ理論(次元正則化)」の続きです。

 

※Bosonの自己エネルギー

前回はFermionの自己エネルギー:Σ(p))を考察しました。

Bosonφの自己エネルギーをΠ(p2)とすると2点関数は,

Fij(p2)=iδij{p2-μ2-Π(p2)}-1

=i[Γφ(2)(p2)]-1..(22)

 

※(注4-1):Fermionの場合の1粒子既約な自己エネルギー

部分:-iΣ(p)と同じくBosonのそれを-iΠ(p2)と

書くと,iΔF’(p2)は初項がa=i(p2-μ2)-1,公比が

r=(p2-μ2)-1Π(p2)の等比級数なので和として,

F’(p2)=a/(1-r)=i{p2-μ2-Π(p2)}-1

を得ます。  (注4-1終わり※)

 

これに効く1PIグラフは図7.4の(a),(b),および,Lcountfree

の相殺項からの寄与です。

したがって,最低次のオーダーで.

Π(1)(p2)=Π(-loop1)(p2)+-Πcount(1)(p2..)

ただし,

-iδijΠ(-loop1)(p2)

=∫dnk(2π)-4(-)Tr[(―igτi)i(-m)-1

(-igτj)i{(k-)-m{-1]  …(23-a)

+∫dnk(2π)-4(-iλ/8)4×3+8)δiji/(k2-μ2)(23-b)

-iΠcount(1)(p2)=i{Z3(1)(p2-μ2)+δμ2(1)} ..(23-c)

 

※(注4-2):(23-b)は,項:λφ4/8のtadpoleの寄与ですが,

φ2=(φ12+φ22+φ32) より

φ4=φ14+φ24+φ34+2φ12φ22+2φ22φ32+2φ32φ12

となります。

アイソスピンの保存によりこのtadpoleに入って出て行く

2本の内線i,jではi=jでなければなりません。

仮にi=j=1なら寄与するのはφ14, 2φ12φ22,2φ32φ12

のみです。

φ14については統計因子(対称性因子)は42=4×3です。

残る2つについては因子は2ですから合計8です。

(注4-2終わり※)

 

Tr(τiτj)=2δij,Tr[(+m){()+m}]

=4k(k-p)+4m2 より,式(23)の

-iδijΠ(-loop1)(p2)

=∫dnk(2π)-4(-)Tr[(―igτi)i(-m)-1

(-igτj)i{(k-)-m{-1] 

+∫dnk(2π)-4(-iλ/8)4×3+8)δiji/(k2-μ2)

において,

第1項=∫01dx∫dnk(2π)-4(-)2・4g2δij

[{k(k-p)+m2}/{k2-2x(pk)-x22+m2)}2]

=(-i)2・4g2δij(4π)-n/2

01dx[{Γ(2-n/2)|(x2-x)p2+m2}

/{m2-x(1-x)p2}(2-n/2)-Γ(1-n/2)(1/2)gμμ}

/{m2-x(1-x)p2}(1-n/2)]

 

=(-i)2・4g2δij(4π)-n/201dx

[{Γ(2-n/2)-Γ(1-n/2)(n/2)}

/{m2-x(1-x)p2}(1-n/2)] です。

 

そして,,Γ(2-n/2)=Γ(ε)=1/ε-γ+O(ε)

Γ(1-n/2)=Γ(ε-1)=Γ(ε)/(ε-1)

=-Γ(ε){1-ε+O(ε2)}

=-1/ε-γ-1+O(ε).:ただし,ε=(4-n)/2

故に,Γ(2-n/2)-Γ(1-n/2)(n/2)

=3(1/ε-γ)+1+O(ε) です。

 

他方,{1/m2-x(1-x)p2}(1-n/2)

={m2-x(1-x)p2}-(ε-1)

={m2-x(1-x)p2}{m2-x(1-x)p2}-ε

={m2-x(1-x)p21}[1-εln{m2-x(1-x)p2}]

01{m2-x(1-x)p21}dx=m2-p2/6

 

よって,与式={(-i)2・4g2/(16π2)}

[(3ε~-1+1)(m2-p2/6)

-3∫01dx{m2-x(1-x)p21}ln{m2-x(1-x)p2}],

また,∫dnk(2π)-n(k2-μ2)-1

=-i(4π)-n/2Γ(1-n/2)μ-(1-n/2)

=-i(4π)-n/2(-ε-1+γ-1)(1-εlnμ22

={-iμ2/(16π2)}(-ε~-1-1+lnμ2) です。

ただし,ε~-1=ε-1-γ+ln(4π) です。

 

それ故,

-iΠ(1-loop)(p2)={(-i)2・4g2/(16π2)}

×[(3ε~-1+1)(m2-p2/6)-3∫01dx

{m2-x(1-x)p21}ln{m2-x(1-x)p2}]

+{-5λ/(32π2)}μ2(-ε~-1-1+lnμ2)..(24)

を得ます。

 

ここでも,次元正則化の代わりにPaulli^Villers正則化

を用いるとどうなるか?を見ておきます。

 

この場合,図7-4(a)の寄与をg(m2)と書くとき,これに

1回引き算をしてg(m2)-g(Λ2)としたものは,まだ

有限にはなりません。そこで,さらに引き算して,

{g(m2)-g(Λ2)}-{g(Λ2+m2)-g(2Λ2)}

とします。

 

同様に,図7-4(b)の寄与:f(μ2)に対しても,

{f(μ2)-f(Λ2)}-{f(Λ2+μ2)-f(2Λ2)}

とします。

 

次元正則化の上の式(24)の結果:

-iΠ(1-loop)(p2)={(-i)2・4g2/(16π2)}

×[(3ε~-1+1)(m2-p2/6)-3∫01dx

{m2-x(1-x)p21}ln{m2-x(1-x)p2}]

+{-5λ/(32π2)}μ2(-ε~-1-1+lnμ2)

において,この引き算の操作を行えば,

 

消える項を除いて,Π(1-loop)(p2)

={3g2/(2π2)}[{-(2ln2)Λ2+m2(lnΛ2+1)

-(p2/6)(lnΛ2-ln2)}

-∫01dx{m2-x(1-x)p21}ln{m2-x(1-x)p2}]

+{5λ/(32π2)}(2ln2)Λ2-μ2(lnΛ2+1-lnμ2)}.(25)

を得ます。

(※↑詳細なチェックは省略して結果を信用します。)

この形には明らかに,Λ2に比例するΛの2次発散の項と

(m22,p2)×lnΛ2に比例する対数発散の項があること

がわかります。

 

この場合,これは自己エネルギー部分の式(23)

の再掲(ただし,n=4):-iδijΠ(-loop1)(p2)

=∫d4k(2π)-4(-)Tr[(―igτi)i(-m)-1

(-igτj)i{(k-)-m{-1]

+∫d4k(2π)-4(-iλ/8)4×3+8)δiji/(k2-μ2)

において,

被積分関数がkの(-2)次で,積分が∫d4kの4次である

こと,および, (m22,p2)の次元2を持った量で展開

すると,発散の次数が2ずつ下がることから理解できます。

 

いずれにしても, Π(-loop1)(p2)は外線運動量:p2の関数

として,p2の0次と1次の項しか含まず,それ故,丁度,

相殺項(23-c):-iΠcount(1)(p2)

=i{Z3(1)(p2-μ2)+δμ2(1)}で相殺できる形です。

 

特に, δμ2(1)=Π(-loop1)(p2=μ2)

=Λ2{5λ/(16π2)-3g22}ln2

+[{3g2/(2π2)}(m2-μ2/6)-5λμ2/(32π2)]

×(ε~-1 or lnΛ2)+(有限定数)//(26),

3(1)=[∂Π(-loop1)/∂p2]p2=μ2

={g2/(4π2)}×(ε~-1 or lnΛ2)+(有限定数).(27)

とおけばΠ(-loop1)+Πcount(1)は有限で,(p2-μ2)

の2次以上の項は無くなり,伝播関数は,p2=μ2

近傍で,iΔFij(p2)=iδij/(p2-μ2)..(28) の形

を物理的質量である,という要請が確かに満たされる

ことになります。

 

途中ですが,今回はこれで終わります。

次回は3点頂点関数から記述する予定です。

 

※参考文献:九後汰一郎著「ゲージ場の量子論Ⅱ」(培風館)

 

 

 

|

« ブログ開始から13周年 | トップページ | くりこみ理論(次元正則化)(5) »

114 . 場理論・QED」カテゴリの記事

コメント

コメントを書く



(ウェブ上には掲載しません)




« ブログ開始から13周年 | トップページ | くりこみ理論(次元正則化)(5) »