« 光の量子論9 | トップページ | 光の量子論11 »

2019年11月 6日 (水)

光の量子論10

※「光の量子論9」からの続きです。

※(余談):今回,この草稿は11/5(火)の早朝にはアップ

できるところまで完成したのですが,直後に月1回の大学病院

での循環器内科と形成外科の外来診察に出かけるためPending

にしました。

最近は食欲がなく,病院では毎度のように待ってるうち低血糖

や貧血などを起こして苦しんだりしてますが,幸い病院なので

誰かが助けてくれます。一応16時前には帰宅し一休みしている

うちに眠ってしまい,起きてTVを見るとプレミア12という野球

放送があり,それを見終えてからアップしました。

今だに,夜零時を過ぎると,なぜか元気になり行動のモチベーション

が上がって,眠くなくなるという不健康な性分は変わりません。

関係ないけど,絶世の美女だったらしい白拍子の静御前の歌

「しづや,しづ,しづのおだまき,繰り返し昔を今になすよしもがな

(成吉思汗?)」(高木彬光 著「ジンギスカンの秘密」から)

など昔の女子の歌が最近また気になってます。

額田王(ぬかだのおおきみ)の,「あかねさす紫のゆき,しめのゆき

野守りは見ずや,君が袖振る」とか小野小町の「花の色は移りに

けりな,いたづらに.わが身世に経る詠め(降る長雨)せし間に」とか

も気になります。

 誰とも縁がなくとも生来の女好き,スケベは,死ぬまで不治の病

です。

与謝野晶子の「柔肌の熱き血潮に触れ揉も見で寂しからずや

道を説く君」などは,まだまだ新しい方ですね。

高校生時代は,なぜか国語だけが田舎の成績でトップクラス

だったので,万葉集から新古今和歌集など和歌は,いろいろ

記憶してます。(余談終わり※)

さて本題です。

前回は第2章 原子・放射相互作用の量子力学の§2.7

のRabi振動の項で,最後に(注9.4)で密度行列ρ^に

対する光学Bloch方程式の特殊な初期条件の解を求めた

ところで中断でした。

今回は,まず,これまでの道筋を少し要約します。

 

原子密度行列:ρ^=(ρij)の4つの行列要素

ρijは,ρ11=|C1|2=N1/N,ρ22=|C2|2=N2/N,

ρ12=C1221=C21で定義されます。

ここで,C1,C2は,時間に依存する波動関数を2準位原子

の状態:1,2の固有波動関数の重ね合わせとして,次のように

表わしたときの係数です。すなわち,

Ψ(,t)=C1(t)Ψ1(,t)+C2(t)Ψ2(,t)です。

密度行列が従う方程式は,Ci(t)が従う方程式から,

dρij/dt=Ci(dCj/dt)+Cj(dCi/dt)

によって導かれます。

故に,dρ22/dt=-dρ11/dt

=-icos(ωt){Ωexp(iω0t)ρ12

+iΩexp(-iω0t)ρ21},および.

dρ12/dt=-dρ21/dt

=iΩcos(ωt)exp(-iω0t)(ρ11-ρ22)です。

 

これに,cos(ωt)=(1/2){exp(iωt)+exp(-iωt)}

を代入し,ω~ω0において,exp{±i(ω0-ω)t}の項だけ

残し,exp{±i(ω0+ω)t}の項を無視する回転波近似を

すると,dρ22/dt=-dρ11/dt

=(-i/2)Ωexp{i(ω0-ω)t}ρ12

+(i/2)Ωexp{-i(ω0-ω)t}ρ21,および,

dρ12/dt=dρ21/dt

=(i/2)Ωexp{-i(ω0-ω)t}(ρ11-ρ22)を得ます。

これを「光学Bloch方程式」と呼びます。

それは振動磁場内のスピンの運動を記述するために

Blochが導出したものと同類のものであるからです。

ここで考察中の2準位原子の量子力学は,形の上では

同じ自由度が2のスピン:1/2の系のそれに全く等しい,

からです。

そして,前記事では(注9-4)で回転波近似をした密度行列

に対する光学Bloch方程式の解が.初期条件がρ22=0,ρ12=0

(C2=0)の場合に,ρ22=(|Ω|212)sin21t/2).(2.87),

および,ρ12=exp{-i(ω0-ω)t}

×{-(ω0-ω)sin(Ω1t/2)+iΩ1cos(Ω1t/2)}.(2.88)

(ただし,Ω1={(ω0-ω)2+|Ω|2}1/2で,Ωは複素数ですが

Ω1は実数)で与えられることを示したところで終わりました。

 さて,この解で入射光の周波数ωと原子遷移の周波数ω0

の離調;ω0-ωがゼロ,つまり,ω=ω0の特別な場合には,,

Ω12=|Ω|2となるため,解はρ22=sin2(|Ω|t/2).(2.89),

および,ρ12=(iΩ/|Ω{2)sin(|Ω|t/2)cos(|Ω|t/2)}

(2.90)と簡単になります。

そこで,この場合,原子は基底状態1と励起状態2との間を

対称的に振動します。これはRabi振動として知られ,|Ω|

はRabi周波数と呼ばれます。

これは,Bloch方程式の場合と同じく振動磁場内のスピン

という類似の問題に対して,Rabiにより初めて得られたもの

です。

さて,光学Bloch方程式は回転波近似が施されている近似

方程式であるため,その解である(2.87),(2.88)は(ω0-ω)

が(ω0+ω)に比べて,はるかに小さいときしか,密度行列の

解の正しい近似とはならず,適切な解として成立しないこと

を強調すべきです。

それ故,(2.87)のρ22=(|Ω|212)sin21t/2)でω=0

12=ω02+|Ω|2と置いても,前々回の記事「光の量子論7」

の(注7.2)でのゼロ周波数静電場ω=0の厳密解|C2|2

={4|Ω|2/(ω02+4|Ω|2)}sin2{(1/2)(ω02+4|Ω|2)1/2t}(2.34)

は得られません。

(2.87),(2.88)は,単一の周波数ωを持つ厳密に単色の入射光

ビームに対する解ですが,実際にはρ22とρ12の正弦関数的挙動

が経験的に観測されるのは,周波数ωが遷移周波数ω0の周りに

あって,その遷移周波数の分布の幅に比べ,周波数ωの広がりが

小さい入射光を用いた場合だけです。

しかし,原子放射過程に広がりを与える過程はまた,光学

Bloch方程式に修正をもたらし,その結果,ρ時間依存性が

変わります。こうした問題については,この第2章の後の方で

論じる予定で,Rabi振動の発生に関する立ち入った考察も,

  • 2.10までPendingです。

 

一方,広帯域の入射ビームという逆の極端な場合は,本章の

初めと第1章で扱ったアインシュタイン理論の領域です。

アインシュタインのB係数の導出に用いた(2.42)の表式:

|C(t)|2­=|Ω|2sin2{(/2ω0-ω)t/2}/(ω0-ω)2は,(2.87)

のρ22(t)=(|Ω|212)sin21t/2)で,(2.84)で定義した

Ω1={(ω0-ω)2+|Ω|2}1/2から|Ω|2を省き,Ω12=(ω0-ω)2

とすれば得られる,解(2.87)の特別な場合に相当しています。

|Ω|2が十分小さければ,

|C(t)|2­=|Ω|2sin2{(/2ω0-ω)t/2}/(ω0-ω)2から

(2.55)のB12=πe2|D12|2/(3ε0c2)なる結果を導出するに

至った以前の手順が,そのまま,成立します。

つまり,原子の核を原点とする束縛電子jの位置ベクトル

jとすると,=Σjjによる全電気双極子モーメントが

=-e(e>0)で与えられるため,振動電場E=0cos(ωt)

存在する場合の摂動の双極子近似の相互作用Hamiltonianは,

=-PE=eDE=eDE0cos(ωt)で与えられます。

定義によって,D12=∫ψ1ψ2dVですが,ベクトルDをD

=(X,Y,Z)と成分表示して,そのx成分X=Dcosθについても,

12=∫ψ1Xψ2dVとすれば,X12=D12cosθであって角度平均

では,<|X12|2>=(1/3)D122となります。

そして,一般には複素数のΩは,(2.23)でΩ=eE012/hにより

定義され,単色光の場合の遷移確率:N2/N=|C2(t)|2を示す(2.42)

の|C2(t)|2=(1/2)|Ω|2sin2{(ω-ω0)t/2}/(ω-ω0)2は,振動

電場E=0cos(ωt)のビーム周波数ωがω0の周りに平均の

エネルギー密度W(ω)の分布を持って幅Δωで広がっているときは,

これは(1/2)|Ω|2に,(1/2)e2|E|02|X12|2/h2を代入し,電磁場

平均エネルギーの,∫W(ω)dω=|1/(2V)∫(ε0|E0|2)dV

=<(1/2)ε0|E0|2>なる対応から.(1/2)|Ω|2

=(1/2)e2|E0|2|X12|2/h2の因子(1/2)|E0|2を,時間平均:

<(1/2)|E0|2>=∫(W(ω)/ε0)dωに置換することで,

準位1→2の広帯域の遷移確率は,

|C2(t)|2={2e2|X12|2/(ε0c2)} W(ω)(Int)

で与えられる,とします。

ただし,積分因子(Int)は:Int=∫ω0-Δω/2ω0+Δω/2dω

×[sin2{(ω-ω0)t/2}/(ω-ω0)2]で定義される量です。

このIntが(tΔω)→∞の極限で,Int=(1/2)πtとなる

ことから,<W(ω)>=∫W(ω)dωについてのB係数を,

12<W(ω)>=<|C(t)|2>={2e2<|X12|2>/(ε0c2)}

×W(ω)(Int)で与え,<W(ω)>=W(ω)(Int)であると

考えると,<|X12|2>=(1/3)D12を代入することで,

12=πe2|D12|2/(3ε0c2)なる計算結果を導いたのでした。

ここで用いた長時間極限:Int=(1/2)πtは,tΔω>>1の

条件下で得たのですが,これは,|Ω|が小さくて,その付帯条件:

|Ω|t<<1(2.91)が満たされていれば,やはり良い近似として

成立します。

この付帯条件は,要するに,入射光が原子遷移を飽和させる

ほどには強くないこと:つまり,アインシュタイン理論で仮定

した「原子遷移と入射エネルギー密度の比例性」を壊すほど

には強くないこと,を保証しています。

なお,光学Bloch方程式の解に含まれている飽和効果に

ついては,§2.9で論じる予定です。

 

  • 2.8 放射広がり

吸収と放出の基礎理論には線幅を広げる1つの機構が既

に含まれています。その広がりは,自発放出のプロセスから

生じるので,「放射による広がり」と呼ばれています。

自発放出の効果を2準位原子気体の感受率の量子力学的

導出の中に取り入れます。このとき,感受率と吸収係数の

関係から,放射によって広がった吸収線の形状に対する表式

が得られます。

 

さて,Z個の電子を持つ原子の気体が,原子の遷移周波数

ω0に近い周波数ωの電磁波から振動効果を受けている場合

を考えます。

前と同様,単一原子が電磁波とH=eDE0cos(ωt)で

記述される相互作用HamiltonianHが作用している場合を

扱います。この単一原子の結果を適当に平均して,乱雑な配向

をした原子(分子)の気体に対する類似の結果を求めます。

まず,印加電場:0cos(ωt)を,

(t)=(1/2)0{exp(-iωt)+exp(iωt)}(2.92)

と書きます。これが,気体に作用すると,(1.79)の=ε0χ

のような分極を生じます。

このχが1次の感受率と呼ばれる量です。

しかし,(2.92)の(t)のような電場では,感受率が周波数

ωに依存するとして,χ(ω)とする必要があり,(1.79)の静場

対する分極の式:=ε0χの代わりに,

(t)=(1/2)ε00{χ(ω)exp(-iωt)+χ(-ω)exp(iωt)}

(2.93)と一般化されます。

この時間に依存する分極:(t)を量子力学的に計算し,それで

得た表式を,上の(2.93)の表式と比較することから感受率χ(ω)を

決めることにします。

 そのため,まず,代表的な1個の原子の分極が気体の分極に

与える寄与を調べます。前と同じく原子の核を原点とするZ個の

電子の位置ベクトルの総和:=Σj=1jを考え,そのx成分をXと

します。電気双極子モーメントのxに平行な成分は,-eX

=-eΣj=1jの期待値で与えられます。

よって,原子波動関数をΨ~(t)と書けば,電気双極子モーメントの

x成分dは,d(t)=∫Ψ~*(t)XΨ~(t)dV(2.94)で与えられます。

ただし,dV積分はZ個の電子全ての座標について取ります。

(※ つまり,(2.94)のd(t)=∫Ψ~*(t)XΨ~(t)dVは.電子:j

の波動関数をΨj(,t)(j=12,。。,Z)とするとき,

d(t)=Σj=1∫Ψj*(j,t)xjΨj(l,t)d3jと表わす表式

の記号的表現とかんがえられます。)

cω0=E2-E1を満たす遷移周波数をω0とすると,原子波動関数

Ψ^は,Ψ^(t)=C1(t)ψ1exp(-iE1t)+C2(t)ψ2exp(-iE2t)

(2.95)となりますから,これを(2.94)に代入すると,

d(t)=-e{C1212exp(-iω0t)+C2121exp(iω0t)}

(2.96)が得られます。ただしXij=∫ψiXψjdV(i,j=1,2)

です。被積分関数:ψi()Xψj()は空間座標軸を反転すると,

ψi(-r)(-X)ψj(-r)となるので,空間波動関数のパリティに

依らず,i=jjなら,ψi()Xψj()はの奇関数になるため,

11=X22=0(2.97)となる,という性質を用いました。

また,定義からX21=X12(2.98)ですから,電気双極子

モーメントd(t)は,予期される通り実数量という表式になって

います。

必要な係数:C1(t),C2(t)は「光の量子論7」の

Ωcos(ωt)exp(-iω0t)C2=i(dC1/dt)(2.31),

Ωcos(ωt)exp(iω0t)C1=i(dC2/dt)(2.32)

を解けば得られます。

しかし,前述したように,これらの運動方程式から解が導ける

のは,電磁場の印加が無いΩ=0のときの定常状態の

波動関数だけであり,その解はC1,C2の初期値のままの定数

に過ぎません。

 

これは印加電磁場が無くても,励起原子は自発放出によって,

究極的には基底状態にへと減衰するはずである,という(1.77)

2=N20exp(-A21t)という挙動に相反します。

しかし,こうした事情は上記の(2.32)に自発放出を表わす項

付け加えることで,修正されます。

すなわち,Ωcos(ωt)exp(iω0t)C1-iγC2=i(dC2/dt)

(2.99)なる修正方程式を採用します。これから,もしも,Ω=0

ならdC2/dt)=-γC2により,C2(t)=C2(0)exp(-γt).(2.100)

が得られます。

N個の同じ原子から成る気体では,t=0ではN20個が励起

されているとき,時刻tで励起されている原子の数は,

2(t)=N|C2(t)|2より,N2(t)=N20exp(-2γt).(2.101)である

と評価されます。

これを,(1.77)のN2(t)=N20exp(-A21t)と比較すれば,

2γ=A21=1/τ.(2.102)(※τは蛍光寿命)と書けます。

そして,こうであるなら(2.99)のように,(2.32)に項:

-iγC2=-iA212/2を追加して,

Ωcos(ωt)exp(iω0t)C1-iγC2=i(dC2/dt)とすること

で,蛍光の減衰が正しく与えられます。

他方,(2.31)のC1の発展方程式の方は,以下では使用しない

ので,ここで修正することはしません。

 

さて,アインシュタインのB係数の導出のときと同様,C1,C2

をΩ(Ω*)の1次まで計算します

Ω,or 電場E0は弱い,としているので,方程式(2.99)の

Ωcos(ωt)exp(iω0t)C1-iγC2=i(dC2/dt)の左辺で,

1=1と近似し,また,Ω≠0とします。

そうして,C1=1とした(2.99)の近似をdC2/dt=-γC2

+(-iΩ/2)[exp{i(ω0+ω)t}+exp{i(ω0-ω)t}]

と書き,これを積分すると.

2(t)=(-Ω/2)[exp{i(ω0+ω)t}/(ω0+ω-iγ)

+exp{i(ω0-ω)t}/(ω0-ω-iγ)].(2.103)を得ます。

 

※[注10-1]:線形非同次方程式:df/dt=-af+g(t)

の解を求めるには,定係数線形同次方程式:

df/dt=-afの解:f=bexp(-at)から,定係数bをtの関数

b(t)にする定数変化法を用いれば可能です。

そこで,df/dt=-af+(db/dt)exp(-at)

=-af+g(t)から,db/dt=exp(at)g(t)なので,

b(t)=∫{exp(at)g(t)}より,

f(t)=[∫{exp(at)g(t)}dt]exp(-at)が得られる,という

話を,今から50年くらい前の大学1年のときに習った?こと

思い出しました。(注10-1終わり※)

 

(2.103)のC2(t)の解から,|C2(t)}2は|Ω|2のオーダーの

大きさであるとわかり,規格化条件:|C1(t)}2+|C2(t)}2=1

(2.104)により,|C1(t)}2=1-|C2(t)}2=1+O(|Ω|2)です

から,C1(t)は,1と|Ω|2のオーダーだけ異なるとわかります。

それ故,Ωの1次までの近似では,C1(t)=1(2.105)と置く

ことが正当化されます。

よって,単一原子の電気双極子モーメント:d(t)は(2.96)の

d(t)=-e{C1212exp(-iω0t)+C2121exp(iω0t)}

に,上記のC2=(-Ω/2)[exp{i(ω0+ω)t}/(ω0+ω-iγ)

+exp{i(ω0-ω)t}/(ω0-ω-iγ)].とC1=1を代入すれば

Ωの1次近似までの式として得られます。

ただし,X12=∫ψ1Xψ2dVで.X21=X12.Ω=eE012/hc

ですから,これらも代入すると,d(t)={e2|X12|20/(2hc)}

×[{exp(iωt)/(ω0+ω-iγ)+exp(-iωt)/(ω0-ω-iγ)}

+exp(-iωt)/(ω0+ω-iγ)+exp(iωt)/(ω0-ω-iγ)}]

(2.106)を得ます。

この単一原子の双極子モーメントを,N根の同種原子の

気体分極:Pに結び付ける必要があります。

このとき,乱雑な配向の電子を持つ原子の平均として,|X12|2

に|X12|2=|D12|2/3を代入します。こうすれば,d(t)はtに

おける気体の1原子あたりの平均双極子モ^メントとなり,

気体分極:P(t)は,P(t)=Nd(t)/V.(2.107)で与えられる

ため,これに(2.106)のd(t)={e2|X12|20/(2hc)}

×[{exp(iωt)/(ω0+ω-iγ)+exp(-iωt)/(ω0-ω-iγ)}

+exp(-iωt)/(ω0+ω+iγ)+exp(iωt)/(ω0-ω+iγ)}]

と,|X12|2=|D12|2/3を代入したものを作り,(2.93)の,

(t)=(1/2)ε00{χ(ω)exp(-iωt)+χ(-ω)exp(iωt)}

と比較することで,χ(ω)={Ne2|D12|2/(3ε0cV)}

×{1/(ω0-ω-iγ)+1/(ω0+ω+iγ)}.(2.108),

かつ,χ(-ω)=χ(ω)(2.109)を得ます。

ここで,第1章で求めた2ηκ=χ“(1.84)とK=2ωκ/c

(1.91)によれば,ωに依存した原子の吸収係数K(ω)は,

感受率をχ(ω)=χ’(ω) +iχ”(ω)と書いたときの虚部

χ”(ω)と,K(ω)={ω/(ηc)}χ”(ω)(2.110)によって

関係付けられます。

※(注10-2):以前の記事「光の量子論3」では.感受率

χを複素数に拡張して,χ=χ’+iχ”(χ’,χ”は実数)と

表わしました。

ところで,原子気体に分極がある場合,これを誘電体

と見なして,その誘電率をεとすると,感受率χは=χε0

定義され,D=ε0なので,ε=(1+χ)ε0です。

周波数ω,波数kで時間的,空間的に変動するz軸の正の

向きに進行する平面波:exp{-i(ωt-kx)}を仮想すると,

誘電体内の位相速度:ω/k=(εμ0)-1/2は,自由空間(真空)

中の光速:c=(ε0μ0)-1/2の(1+χ)-1/2倍に相当するので,

(ck/ω)2=1+χと書けますが,これの平方根も複素数です

から,ck/ω=η+iκ(η,κは実数)と書きます。

(※こう定義すると,光学においては,ηが屈折率,κが吸収係数

に相当する,ことがわかります。)

これを,(ck/ω)2=(1+χ’)+iχ”に代入すれば,

η2-κ2=1+χ’.および,2ηκ=χ“.を得ます。

ここで,単位時間に単位面積を通過する場のエネルギー

として定義される,電場,磁場の電磁波の強度:

そのPoyntingベクトルで,××0と定義

して,ベクトルIの大きさのサイクル平均を取り,<I>

書けば,<I>=(1/2)ε0cη|(r,t)|2なる式を得ます。

ただし,E(r,t)は,空間的,時間的に変動する電磁波の

電場であり,これはz軸向きの進行波の形の(r,t)

0exp{i(kz-ωt)}

0exp{iω(ηz/c-t)-ωκz/c}

を想定しています。

サイクル平均強度:<I>はzの関数となるので,改めて

<I>をI=I(z)と書き.I0をz=0におけるサイクル平均強度

すれば,I(z)=I0exp(-Kz)と書けます。

ただし,K=2ωκ/cです。

と書きました。

そこで,2ηκ=χ“を用いると,K={ω/(ηc)}χ”

が得られます。(注10-2終わり※)

さて,ck/ω=(1+χ)1/2=η+iκであって,2ηκ=χ“

を与える実数ηは,光学では屈折率を示しますが,これも

χ“=χ“(ω)と表わしたときはωの関数で,η=η(ω)と

書けます。しかし,この屈折れは,あらゆる周波数ωで1に

近い値であることが知られています。

そして,十分希薄な気体を考えると,ω~ω0で,γ<<ω0

とき,には,χ(ω)={Ne2|D12|2/(3ε0cV)}

×{1/(ω0-ω-iγ)+1/(ω0+ω+iγ)}.(2.108)の

{ }内では,明らかに,(第1項)>>(第2項です。

そこで,回転波近似を適用して第2項を無視します。

すると,(2.110)の,K(ω)={ω/(ηc)}χ”(ω)は,

η~1として,K(ω)~{πNe2|D12|2ω0/(3ε0ccV)}

×[(γ/π)/{(ω0-ω)2+γ2}].(2.111)となります。

この吸収係数Kの周波数依存性:F1(ω)

=(γ/π)/{(ω0-ω)2+γ2}(2.112)は,Lorentz型曲線

(Lorentz関数曲線)として知られています。

「ローレンツ型分布」の画像検索結果

これは∫F1(ω)dω=1.(2.113)と規格化されるように

係数因子(1/π)を付けています。

そして,F1(ω)の曲線はω=ω0で最大値;1/(πγ)を

取りますが,この1/2の高さ1/(2πγ)に相当するωは,

ω=ω0±γであり,その間のωの全幅は丁度2γです。

こうして,(2.102)の2γ=A21=1/τ(※τは蛍光寿命)

より,このωのω0の周りの放射広がり=2γが,その遷移に

関する自発放出のA係数に等しい幅を生じる.と述べる

ことができます。

 水素の2p状態が自発放出によって1s状態に減衰する

場合は,前々回の記事「光の量子論8」で詳細に計算し,

21~ 6.7×108-1(2.57)なる評価式を得ました。

そこで,この場合,放射広がりは,2γ~ 6.7×10 8-1

大きさです。よって,この遷移に対応する吸収線は,自発放出

のため,角周波数Δωでなく,周波数Δν=Δω/(2π)の意味で,

約10 8Hzの幅を持つことになります。

しかし,これは極端に狭い値であり,大抵の実験で観測される

原子吸収線の幅は,他の機構:例えば後述する予定のドプラー

(Doppler)効果か,または,原子の衝突が原因と考えられます。

ところが.これら別の付加的広がりについては,原理的には,

何らかの方法,例えば気体の冷却とか,気圧を下げるとか,

で減少させることができます。

一方,放射広がりの方は自発放出が原因なので,これを減少

させることは不可能であり,A21はΔωとして到達可能な最小

幅です。

この意味で,この自発放出による線幅を「スペクトル線の固有値」

と呼ばれます。

この放射による線幅は,アインシュタインのB係数の量子論的

表式を導くために「光の量子論7」で決めた|C2(t)|2の(2.44)

の表式|C2(t)|2={2e2{X12|2/(ε0c2)}

ω0-Δω/2ω0+Δω/2[W(ω)sin2{(ω-ω0)t/2}

/(ω-ω0)2]dω.で用いた入射光の周波数幅:Δωに,その最小値

として2γ=A21=1/τを提供します。

この(2.44)は,|C2(t)|2

={2e2|X12|2/(ε0c2)}W(ω)(Int)(2.45),

Int=∫ω0-Δω/2ω0+Δω/2dω[sin2{(ω-ω0)t/2}/(ω-ω0)2]

(2.46)と表わされ,tΔω>>1なら,Int=πt/2((2.48)を

得ます。と書きましたが,この誘導放出のB係数を与える

遷移確率の因子Int=πt/2によるtへの直線的依存性は,結局,

自発放出の蛍光寿命よりはるかに大きい長時間,t>>τ

対してしか成立しない,と言えます。

 

今回は,ここまでにします。(つづく)

 

(参考文献):Rodney Loudon 著

(小島忠宣・小島和子 共訳)

「光の量子論第2版」(内田老鶴舗)

 

|

« 光の量子論9 | トップページ | 光の量子論11 »

103. 電磁気学・光学」カテゴリの記事

コメント

コメントを書く



(ウェブ上には掲載しません)




« 光の量子論9 | トップページ | 光の量子論11 »